Communication Complexity as a Principle of Quantum Mechanics

We introduce a two-party communication complexity problem in which the probability of success by using a particular strategy allows the parties to detect with certainty whether or not some forbidden communication has taken place. We show that the probability of success is bounded by nature; any conceivable method which gives a probability of success outside these bounds is impossible. Moreover, any conceivable method to solve the problem which gives a probability success within these bounds is possible in nature. This example suggests that a suitably chosen set of communication complexity problems could be the basis of an information-theoretic axiomatization of quantum mechanics.

[1]  Samuel L. Braunstein Quantum computing : where do we want to go tomorrow? , 2005 .

[2]  Ran Raz,et al.  Exponential separation of quantum and classical communication complexity , 1999, STOC '99.

[3]  Kurt Jacobs,et al.  Information-tradeoff relations for finite-strength quantum measurements , 2001 .

[4]  N. David Mermin,et al.  Foundational, Historical, Anecdotal and Forward-Looking Thoughts on the Quantum , 2001 .

[5]  C. Fuchs Quantum mechanics as quantum information, mostly , 2003 .

[6]  P. K. Aravind Quantum mysteries revisited again , 2004 .

[7]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[8]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[9]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[10]  L. J. Landau,et al.  On the violation of Bell's inequality in quantum theory , 1987 .

[11]  Arthur Fine,et al.  Joint distributions, quantum correlations, and commuting observables , 1982 .

[12]  G. Brassard,et al.  Quantum Communication Complexity , 2003 .

[13]  L. J. Landau,et al.  Empirical two-point correlation functions , 1988 .

[14]  Andrei Khrennikov Quantum theory: Reconsideration of foundations , 2003 .

[15]  Adan Cabello Bell's theorem without inequalities and without probabilities for two observers. , 2001 .

[16]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[17]  N. Mermin What's Wrong with these Elements of Reality? , 1990 .

[18]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[19]  Hoi-Kwong Lo,et al.  Is Quantum Bit Commitment Really Possible? , 1996, ArXiv.

[20]  A Cabello "All versus nothing" inseparability for two observers. , 2001, Physical review letters.

[21]  Christopher A. Fuchs Information Gain vs. State Disturbance in Quantum Theory , 1996 .

[22]  N. Mermin Bringing Home the Atomic World: Quantum Mysteries for Anybody. , 1981 .

[23]  Harry Buhrman,et al.  Quantum Entanglement and Communication Complexity , 2000, SIAM J. Comput..

[24]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[25]  Gul Agha,et al.  English Version , 2019, Synthese.

[26]  M. Żukowski,et al.  Bell's inequalities and quantum communication complexity. , 2004, Physical review letters.

[27]  M. Froissart Constructive generalization of Bell’s inequalities , 1981 .

[28]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[29]  S. Popescu,et al.  Quantum nonlocality as an axiom , 1994 .

[30]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[31]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[32]  P. K. Aravind,et al.  Bell’s Theorem Without Inequalities and Only Two Distant Observers , 2001, OFC 2001.

[33]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[34]  Jouni Viiri Symposium on the foundations of modern physics 1990 , 1989 .

[35]  Horst Kant,et al.  Review of: Wheeler, John Archibald with Ford, Kenneth: Geons, black holes, and quantum foam : a life in physics. New York, NY: Norton 1999 , 2000 .

[36]  W. H. Zurek Complexity, Entropy and the Physics of Information , 1990 .

[37]  Boris Tsirelson,et al.  Quantum/classical correspondence in the light of Bell's inequalities , 1992 .

[38]  S. Massar,et al.  Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.

[39]  Peter Hoyer,et al.  Multiparty quantum communication complexity. , 1997 .

[40]  Patrice E. A. Turchi,et al.  Decoherence and its implications in quantum computation and information transfer , 2001 .

[41]  N. Mermin Whats Wrong with those Epochs , 1990 .

[42]  J. Wheeler,et al.  Geons, Black Holes and Quantum Foam: A Life in Physics , 1998 .

[43]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[44]  N. Mermin Quantum mysteries revisited , 1990 .

[45]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[46]  G. Brassard,et al.  Quantum Pseudo-Telepathy , 2004, quant-ph/0407221.

[47]  Andrew M. Steane,et al.  Physicists triumph at 'Guess My Number' , 2000 .

[48]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[49]  Lev Vaidman,et al.  Tests of Bell inequalities , 2001, quant-ph/0107057.

[50]  A. Zeilinger A Foundational Principle for Quantum Mechanics , 1999, Synthese Library.

[51]  Jeffrey Bub,et al.  Characterizing Quantum Theory in Terms of Information-Theoretic Constraints , 2002 .

[52]  R. Cleve,et al.  SUBSTITUTING QUANTUM ENTANGLEMENT FOR COMMUNICATION , 1997, quant-ph/9704026.

[53]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[54]  Benni Reznik,et al.  DECOHERENCE AND ITS IMPLICATIONS IN QUANTUM COMPUTATION AND INFORMATION TRANSFER , 2001 .