Local Search Methods for the Optimal Winner Determination Problem in Combinatorial Auctions

In this paper, both stochastic local search (SLS) and tabu search (TS) are studied for the optimal winner determination problem (WDP) in combinatorial auctions. The proposed methods are evaluated on various benchmark problems, and compared with the hybrid simulated annealing (SAGII), the memetic algorithms (MA) and Casanova. The computational experiments show that the SLS provides competitive results and finds solutions of a higher quality than TS and Casanova methods.

[1]  R. McAfee,et al.  Auctions and Bidding , 1986 .

[2]  Subhash Suri,et al.  Improved Algorithms for Optimal Winner Determination in Combinatorial Auctions and Generalizations , 2000, AAAI/IAAI.

[3]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[4]  Yoav Shoham,et al.  Combinatorial Auctions , 2005, Encyclopedia of Wireless Networks.

[5]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[6]  Arne Andersson,et al.  Integer programming for combinatorial auction winner determination , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[7]  Moshe Tennenholtz,et al.  An Algorithm for Multi-Unit Combinatorial Auctions , 2000, AAAI/IAAI.

[8]  Habiba Drias,et al.  Stochastic Local Search for the Optimal Winner Determination Problem in Combinatorial Auctions , 2008, CP.

[9]  James C. Bean,et al.  Genetic Algorithms and Random Keys for Sequencing and Optimization , 1994, INFORMS J. Comput..

[10]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[11]  Habiba Drias,et al.  A memetic algorithm for the optimal winner determination problem , 2009, Soft Comput..

[12]  Yoav Shoham,et al.  Taming the Computational Complexity of Combinatorial Auctions: Optimal and Approximate Approaches , 1999, IJCAI.

[13]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[14]  Y. Zhu,et al.  Heuristics for a Brokering Set Packing Problem , 2004, AI&M.

[15]  Hoong Chuin Lau,et al.  An intelligent brokering system to support multi-agent Web-based 4/sup th/-party logistics , 2002, 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings..

[16]  Barry O'Sullivan,et al.  Towards Fast Vickrey Pricing using Constraint Programming , 2004, Artificial Intelligence Review.

[17]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[18]  Noam Nisan,et al.  Bidding and allocation in combinatorial auctions , 2000, EC '00.

[19]  David Levine,et al.  CABOB: A Fast Optimal Algorithm for Combinatorial Auctions , 2001, IJCAI.

[20]  J. C. Bean Genetics and random keys for sequencing amd optimization , 1993 .

[21]  Ronald M. Harstad,et al.  Computationally Manageable Combinational Auctions , 1998 .

[22]  Yi Zhu,et al.  Heuristics for a bidding problem , 2006, Comput. Oper. Res..

[23]  Sven de Vries,et al.  Combinatorial Auctions: A Survey , 2003, INFORMS J. Comput..

[24]  Tuomas Sandholm,et al.  Optimal Winner Determination Algorithms , 2005 .

[25]  Craig Boutilier,et al.  Solving Combinatorial Auctions Using Stochastic Local Search , 2000, AAAI/IAAI.