Arbitrary amplitude solitary waves in plasmas with dust grains of opposite polarity and non-thermal ions

Abstract The existence of large amplitude solitary waves in a plasma comprised of a cold negative dust fluid, adiabatic positive dust fluid, Boltzmann electrons and non-thermal ions is theoretically investigated. Different regions in parameter space that correspond to different values of the ratio of the charge-to-mass ratios of the positive and negative dust grains have been identified where either negative or positive potential solitary wave structures occur and a region where coexistence of negative and positive potential solitary waves is supported.

[1]  F. Verheest Nonlinear acoustic waves in nonthermal plasmas with negative and positive dust , 2009 .

[2]  F. Verheest,et al.  Dust-acoustic solitary structures in plasmas with nonthermal electrons and positive dust , 2008 .

[3]  I. Dandouras,et al.  Multi-instrument analysis of electron populations in Saturn's magnetosphere , 2008 .

[4]  F. Verheest,et al.  Large amplitude dust-acoustic solitary waves and double layers in nonthermal plasmas , 2008 .

[5]  R. Bharuthram,et al.  Arbitrary amplitude dust-acoustic solitons in a weakly non-ideal plasma with non-thermal ions , 2007 .

[6]  G. Lakhina,et al.  Arbitrary amplitude dust-acoustic double layers in a non-thermal plasma , 2005, Journal of Plasma Physics.

[7]  G. Lakhina,et al.  The Effect of Dust Grain Temperature and Dust Streaming on Electrostatic Solitary Structures in a Non-Thermal Plasma , 2004 .

[8]  Yoshifumi Futaana,et al.  Moon‐related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms , 2003 .

[9]  Abdullah Al Mamun,et al.  Large amplitude electrostatic solitary structures in a hot non- thermal dusty plasma , 2000 .

[10]  David P. Hamilton,et al.  Dust Measurements During Galileo's Approach to Jupiter and Io Encounter , 1996, Science.

[11]  Pieper,et al.  Dispersion of Plasma Dust Acoustic Waves in the Strong-Coupling Regime. , 1996, Physical review letters.

[12]  V. Tanna,et al.  Trapping of dust and dust acoustic waves in laboratory plasmas , 1996 .

[13]  Abdullah Al Mamun,et al.  Effects of vortex‐like and non‐thermal ion distributions on non‐linear dust‐acoustic waves , 1996 .

[14]  R. A. Cairns,et al.  Electrostatic solitary structures in non‐thermal plasmas , 1995 .

[15]  R. Merlino,et al.  Laboratory observation of the dust-acoustic wave mode , 1995 .

[16]  Anders Eriksson,et al.  Freja multiprobe observations of electrostatic solitary structures , 1994 .

[17]  N. D’angelo Coulomb solids and low-frequency fluctuations in RF dusty plasmas , 1994 .

[18]  D. A. Mendis,et al.  COSMIC DUSTY PLASMA , 1994 .

[19]  D. Mendis,et al.  Role of grain size and particle velocity distribution in secondary electron emission in space plasmas , 1993 .

[20]  D. Mendis,et al.  Some aspects of dust-plasma interactions in the cosmic environment , 1992 .

[21]  F. Verheest Nonlinear dust-acoustic waves in multispecies dusty plasmas , 1992 .

[22]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[23]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[24]  C. Goertz,et al.  Dusty plasmas in the solar system , 1989 .

[25]  Louis J. Lanzerotti,et al.  General characteristics of hot plasma and energetic particles in the Saturnian magnetosphere: Results from the Voyager spacecraft , 1983 .

[26]  Henry B. Garrett,et al.  Charged particle distributions in Jupiter's magnetosphere , 1983 .

[27]  J. Asbridge,et al.  Outward flow of protons from the Earth's bow shock , 1968 .