Mining fuzzy association rules from low-quality data

Data mining is most commonly used in attempts to induce association rules from databases which can help decision-makers easily analyze the data and make good decisions regarding the domains concerned. Different studies have proposed methods for mining association rules from databases with crisp values. However, the data in many real-world applications have a certain degree of imprecision. In this paper we address this problem, and propose a new data-mining algorithm for extracting interesting knowledge from databases with imprecise data. The proposed algorithm integrates imprecise data concepts and the fuzzy apriori mining algorithm to find interesting fuzzy association rules in given databases. Experiments for diagnosing dyslexia in early childhood were made to verify the performance of the proposed algorithm.

[1]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[2]  Mehmet Kaya,et al.  Multi-objective genetic algorithm based approaches for mining optimized fuzzy association rules , 2006, Soft Comput..

[3]  Tzung-Pei Hong,et al.  MOGA-based fuzzy data mining with taxonomy , 2013, Knowl. Based Syst..

[4]  Thomas Sudkamp,et al.  Examples, counterexamples, and measuring fuzzy associations , 2005, Fuzzy Sets Syst..

[5]  Erhan Akin,et al.  An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules , 2006, Soft Comput..

[6]  Shichao Zhang,et al.  Association Rule Mining: Models and Algorithms , 2002 .

[7]  Tzung-Pei Hong,et al.  Linguistic data mining with fuzzy FP-trees , 2010, Expert Syst. Appl..

[8]  Julián de Ajuriaguerra,et al.  Manual de psiquiatría infantil , 1975 .

[9]  Berlin Wu,et al.  Interval-valued statistics, fuzzy logic, and their use in computational semantics , 2001, J. Intell. Fuzzy Syst..

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Francisco Herrera,et al.  Rule Base Reduction and Genetic Tuning of Fuzzy Systems Based on the Linguistic 3-tuples Representation , 2006, Soft Comput..

[12]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[13]  Daniel Sánchez,et al.  Fuzzy association rules: general model and applications , 2003, IEEE Trans. Fuzzy Syst..

[14]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[15]  Chin-Tzong Pang,et al.  Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules , 2010 .

[16]  Philip S. Yu,et al.  A Survey of Uncertain Data Algorithms and Applications , 2009, IEEE Transactions on Knowledge and Data Engineering.

[17]  Ke Sun,et al.  Mining Weighted Association Rules without Preassigned Weights , 2008, IEEE Transactions on Knowledge and Data Engineering.

[18]  Philipp Limbourg,et al.  Multi-objective Optimization of Problems with Epistemic Uncertainty , 2005, EMO.

[19]  Francisco Herrera,et al.  A Fast and Scalable Multiobjective Genetic Fuzzy System for Linguistic Fuzzy Modeling in High-Dimensional Regression Problems , 2011, IEEE Transactions on Fuzzy Systems.

[20]  Tzung-Pei Hong,et al.  Finding Pareto-front Membership Functions in Fuzzy Data Mining , 2012, Int. J. Comput. Intell. Syst..

[21]  Francisco Herrera,et al.  A New Multiobjective Evolutionary Algorithm for Mining a Reduced Set of Interesting Positive and Negative Quantitative Association Rules , 2014, IEEE Transactions on Evolutionary Computation.

[22]  Jesús Alcalá-Fdez,et al.  A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems With Genetic Rule Selection and Lateral Tuning , 2011, IEEE Transactions on Fuzzy Systems.

[23]  Jesús Alcalá-Fdez,et al.  KEEL Data-Mining Software Tool: Data Set Repository, Integration of Algorithms and Experimental Analysis Framework , 2011, J. Multiple Valued Log. Soft Comput..

[24]  Jian Pei,et al.  Data Mining: Concepts and Techniques, 3rd edition , 2006 .

[25]  Rudolf Kruse,et al.  Uncertainty and Vagueness in Knowledge Based Systems , 1991, Artificial Intelligence.

[26]  Tzung-Pei Hong,et al.  Trade-off Between Computation Time and Number of Rules for Fuzzy Mining from Quantitative Data , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[27]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[28]  Inés Couso,et al.  Future Performance Modeling in Athletism with Low Quality Data-based Genetic Fuzzy Systems , 2011, J. Multiple Valued Log. Soft Comput..

[29]  Didier Dubois,et al.  Random Sets and Random Fuzzy Sets as Ill-Perceived Random Variables: An Introduction for Ph.D. Students and Practitioners , 2014 .

[30]  Jesús Alcalá-Fdez,et al.  Analysis of the Effectiveness of the Genetic Algorithms based on Extraction of Association Rules , 2010, Fundam. Informaticae.

[31]  Francisco Herrera,et al.  Real-Coded Memetic Algorithms with Crossover Hill-Climbing , 2004, Evolutionary Computation.

[32]  Claudio Moraga,et al.  A new aspect for the optimization of fuzzy if-then rules , 2005, 35th International Symposium on Multiple-Valued Logic (ISMVL'05).

[33]  Inés Couso,et al.  Mutual information-based feature selection and partition design in fuzzy rule-based classifiers from vague data , 2008, Int. J. Approx. Reason..

[34]  Tzung-Pei Hong,et al.  Genetic-fuzzy mining with multiple minimum supports based on fuzzy clustering , 2011, Soft Comput..

[35]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[36]  Francisco Herrera,et al.  QAR-CIP-NSGA-II: A new multi-objective evolutionary algorithm to mine quantitative association rules , 2014, Inf. Sci..

[37]  Didier Dubois,et al.  Fuzzy sets-a convenient fiction for modeling vagueness and possibility , 1994, IEEE Trans. Fuzzy Syst..

[38]  Eyke Hüllermeier,et al.  A systematic approach to the assessment of fuzzy association rules , 2006, Data Mining and Knowledge Discovery.

[39]  Tzung-Pei Hong,et al.  Mining association rules from quantitative data , 1999, Intell. Data Anal..

[40]  Francisco Herrera,et al.  Genetic fuzzy systems: taxonomy, current research trends and prospects , 2008, Evol. Intell..

[41]  Vera Pawlowsky-Glahn,et al.  Statistical Modeling , 2007, Encyclopedia of Social Network Analysis and Mining.

[42]  Chengqi Zhang,et al.  Association Rule Mining , 2002, Lecture Notes in Computer Science.

[43]  Eyke Hüllermeier,et al.  In Defense of Fuzzy Association Analysis , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[44]  Jorge Casillas,et al.  Genetic learning of fuzzy rules based on low quality data , 2009, Fuzzy Sets Syst..

[45]  Marcelo Simoes Introduction to Fuzzy Control , 2003 .

[46]  Didier Dubois,et al.  Representing parametric probabilistic models tainted with imprecision , 2008, Fuzzy Sets Syst..

[47]  A. Kaufmann,et al.  Introduction to fuzzy arithmetic : theory and applications , 1986 .

[48]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[49]  H. Ishibuchi,et al.  Fuzzy association rules for handling continuous attributes , 2001, ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings (Cat. No.01TH8570).

[50]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[51]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[52]  Jorge Casillas,et al.  Modeling Vague Data with Genetic Fuzzy Systems under a Combination of Crisp and Imprecise Criteria , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[53]  Caroline M. Eastman,et al.  Response: Introduction to fuzzy arithmetic: Theory and applications : Arnold Kaufmann and Madan M. Gupta, Van Nostrand Reinhold, New York, 1985 , 1987, Int. J. Approx. Reason..

[54]  Inés Couso,et al.  Higher order models for fuzzy random variables , 2008, Fuzzy Sets Syst..

[55]  Thomas H. Bond,et al.  Results of an icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel , 1992 .

[56]  Dunja Mladenic,et al.  Data mining and decision support : integration and collaboration , 2003 .

[57]  Luciano Sánchez,et al.  Taximeter verification using imprecise data from GPS , 2009, Eng. Appl. Artif. Intell..

[58]  Antonio González Muñoz,et al.  A Study About the Inclusion of Linguistic Hedges in a Fuzzy Rule Learning Algorithm , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[59]  Jiawei Han,et al.  Data Mining: Concepts and Techniques, Second Edition , 2006, The Morgan Kaufmann series in data management systems.

[60]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[61]  D. Ralescu,et al.  Statistical Modeling, Analysis and Management of Fuzzy Data , 2001 .

[62]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[63]  Margaret Edwards,et al.  Dyslexia : a multidisciplinary approach , 1997 .

[64]  Hong Chen,et al.  FARP: Mining fuzzy association rules from a probabilistic quantitative database , 2013, Inf. Sci..

[65]  M. K. Luhandjula Studies in Fuzziness and Soft Computing , 2013 .

[66]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[67]  Tzung-Pei Hong,et al.  An Overview of Mining Fuzzy Association Rules , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[68]  Francisco Herrera,et al.  Integration of an Index to Preserve the Semantic Interpretability in the Multiobjective Evolutionary Rule Selection and Tuning of Linguistic Fuzzy Systems , 2010, IEEE Transactions on Fuzzy Systems.

[69]  Wolfgang Spohn,et al.  The Representation of , 1986 .

[70]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[71]  Jian Pei,et al.  Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach , 2006, Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06).

[72]  Yen-Liang Chen,et al.  Mining fuzzy association rules from uncertain data , 2010, Knowledge and Information Systems.

[73]  Manuel Vinuesa Lope,et al.  Tratado de atletismo , 1983 .

[74]  Didier Dubois,et al.  On the representation, measurement, and discovery of fuzzy associations , 2005, IEEE Transactions on Fuzzy Systems.

[75]  Francisco Herrera,et al.  Genetic Fuzzy Systems - Evolutionary Tuning and Learning of Fuzzy Knowledge Bases , 2002, Advances in Fuzzy Systems - Applications and Theory.