ON and OFF S-cone pathways have different long-wave cone inputs

Three experiments compared thresholds for S-cone increments and decrements under steady and transient adaptation conditions, to investigate whether stimuli of both polarities are detected by the same cone-opponent psychophysical mechanism. The results could not be accounted for by a standard model of the S-cone detection pathway [Polden & Mollon (1980) Proceedings of the Royal Society of London, B, 210, 235-272]. In particular, a transient tritanopia detection paradigm that measured threshold elevation following the offset of long-wavelength fields produced different field sensitivities for S-cone increment and decrement tests. The decrement field sensitivity function was shifted to shorter wavelengths relative to the increment function. L-cone opponency is apparently stronger for S-cone increments than for decrements. The most plausible substrates of the two different psychophysical detection mechanisms are the ON and OFF channels. The results suggest that S-ON (bistratified) and S-OFF ganglion cells receive different relative amounts of L- and M-cone input.

[1]  D. Macleod,et al.  Local nonlinearity in S-cones and their estimated light-collecting apertures , 1998, Vision Research.

[2]  D. Macleod,et al.  Spectral sensitivities of the human cones. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  J D Mollon,et al.  Reversed effect of adapting stimuli on visual sensitivity , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  R T Eskew,et al.  Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms. , 1998, Vision research.

[5]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[6]  K R Gegenfurtner,et al.  Contrast detection in luminance and chromatic noise. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[7]  L. Mahon,et al.  Color and luminance detection and discrimination asymmetries and interactions , 1998, Vision Research.

[8]  A. Reeves Transient tritanopia after flicker adaptation , 1981, Vision Research.

[9]  A. Reeves Transient tritanopia: Its abolition at high intensities , 1981, Vision Research.

[10]  R W Jones,et al.  Increment and decrement visual thresholds. , 1968, Journal of the Optical Society of America.

[11]  Qasim Zaidi,et al.  The effect of adaptation on the differential sensitivity of the S-cone color system , 1992, Vision Research.

[12]  P. Lennie,et al.  Mechanisms Underlying Segmentation of Colored Textures , 1997, Vision Research.

[13]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[14]  Kenneth Knoblauch,et al.  Spectral bandwidths for the detection of color , 1998, Vision Research.

[15]  W. Stiles Increment thresholds and the mechanisms of colour vision. , 1949, Documenta ophthalmologica. Advances in ophthalmology.

[16]  A. Stockman,et al.  Color from invisible flicker: a failure of the Talbot–Plateau law caused by an early ‘hard’ saturating nonlinearity used to partition the human short-wave cone pathway , 1998, Vision Research.

[17]  Gunilla Haegerstrom-Portnoy,et al.  Rods induce transient tritanopia in blue cone monochromats , 1999, Vision Research.

[18]  Rhea T Eskew,et al.  Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms , 1998, Vision Research.

[19]  Jay M. Enoch,et al.  The Two-Color Threshold Technique of Stiles and Derived Component Color Mechanisms , 1972 .

[20]  K. D. De Valois,et al.  Orientation and spatial-frequency discrimination for luminance and chromatic gratings. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[21]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[22]  C. Stromeyer,et al.  Apparent saturation of blue-sensitive cones occurs at a color-opponent stage. , 1978, Science.

[23]  P. Gouras,et al.  Three cone mechanisms in the primate electroretinogram: Two with, one without off-center bipolar responses , 1986, Vision Research.

[24]  D. W. Heeley,et al.  Cardinal directions of color space , 1982, Vision Research.

[25]  Qasim Zaidi,et al.  The effects of prolonged temporal modulation on the differential response of color mechanisms , 1992, Vision Research.

[26]  J. Mollon,et al.  A theory of theΠ1 andΠ3 color mechanisms of stiles , 1979, Vision Research.

[27]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[28]  G. C. Duncan,et al.  Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity , 1989, Visual Neuroscience.

[29]  J. D. Mollon,et al.  Post-receptoral adaptation , 1979, Vision Research.

[30]  Joel Pokorny,et al.  Sawtooth contrast sensitivity: Decrements have the edge , 1989, Vision Research.

[31]  Barry B. Lee,et al.  Horizontal Cells of the Primate Retina: Cone Specificity Without Spectral Opponency , 1996, Science.

[32]  H. Kolb,et al.  Horizontal cells and cone photoreceptors in human retina: A Golgi‐electron microscopic study of spectral connectivity , 1994, The Journal of comparative neurology.

[33]  J. Mollon,et al.  Saturation of a retinal cone mechanism , 1977, Nature.

[34]  J. Loomis Transient tritanopia: Failure of time-intensity reciprocity in adaptation to longwave light , 1980, Vision Research.

[35]  Peter H. Schiller,et al.  The ON and OFF channels of the visual system , 1992, Trends in Neurosciences.

[36]  Peter H. Schiller,et al.  Lack of blue OFF-center cells in the visual system of the monkey , 1978, Brain Research.

[37]  H. Hécaen Handbook of sensory physiology VII/4, visual psychophysics : Edited by O. Jameson and M. C. Hurvich, Springer-Verlag, Berlin, 1972, 812 pp. D.M. 151.70 , 1973 .

[38]  R. Weale Mechanisms of Colour Vision , 1979 .

[39]  M. Hayhoe,et al.  The time-course of multiplicative and subtractive adaptation process , 1987, Vision Research.

[40]  D H Kelly,et al.  Theory of flicker and transient responses. III. An essential nonlinearity. , 1978, Journal of the Optical Society of America.

[41]  A. Stockman,et al.  The incremental threshold of the rod visual system and Weber's law. , 1989, Science.

[42]  E. J. Augenstein,et al.  The dynamics of the Π1 colour mechanism: further evidence for two sites of adaptation , 1977, The Journal of physiology.

[43]  Barry B. Lee,et al.  Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus , 1986, Vision Research.

[44]  K. Mullen,et al.  Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[45]  Edward H. Adelson,et al.  Saturation and adaptation in the rod system , 1982, Vision Research.

[46]  Angela M. Brown,et al.  Higher order color mechanisms , 1986, Vision Research.

[47]  J. Mollon,et al.  An anomaly in the response of the eye to light of short wavelengths. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  D. Norren,et al.  Transient tritanopia at the level of the ERGb-wave , 1979, Vision Research.

[49]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[50]  John Krauskopf,et al.  Discrimination and detection of changes in luminance , 1980, Vision Research.

[51]  J. D. Mollon,et al.  Post-receptoral adaptation , 1979, Vision Research.

[52]  J D Mollon,et al.  Tyndall's paradox of hue discrimination. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[53]  C. Stromeyer,et al.  Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms , 1979, Vision Research.

[54]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[55]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[56]  J. J. Wisowaty An action spectrum for the production of transient tritanopia , 1983, Vision Research.

[57]  J. J. Vos Colorimetric and photometric properties of a 2° fundamental observer , 1978 .

[58]  E. N. Pugh,et al.  The π Mechanisms of W S Stiles: An Historical Review , 1986, Perception.

[59]  M. Webster,et al.  The influence of contrast adaptation on color appearance , 1994, Vision Research.