Data-driven individual and joint chance-constrained optimization via kernel smoothing

Abstract We propose a data-driven, nonparametric approach to reformulate (conditional) individual and joint chance constraints with right-hand side uncertainty into algebraic constraints. The approach consists of using kernel smoothing to approximate unknown true continuous probability density/distribution functions. Given historical data for continuous univariate or multivariate random variables (uncertain parameters in an optimization model), the inverse cumulative distribution function (quantile function) and the joint cumulative distribution function are estimated for the univariate and multivariate cases, respectively. The approach relies on the construction of a confidence set that contains the unknown true distribution. The distance between the true distribution and its estimate is modeled via ϕ -divergences. We propose a new way of specifying the size of the confidence set (i.e., the ϕ -divergence tolerance) based on point-wise standard errors of the smoothing estimates. The approach is illustrated with a motivating and an industrial production planning problem with uncertain plant production rates.

[1]  Warren B. Powell,et al.  Approximate Dynamic Programming - Solving the Curses of Dimensionality , 2007 .

[2]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[3]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[4]  Aman Ullah,et al.  Nonparametric Econometrics: Introduction , 1999 .

[5]  John V. Soden,et al.  Admissible Decision Rules for the E-Model of Chance-Constrained Programming , 1971 .

[6]  Abraham Charnes,et al.  Some Special P-Models in Chance-Constrained Programming , 1967 .

[7]  András Prékopa Static Stochastic Programming Models , 1995 .

[8]  Warren B. Powell,et al.  Approximate Dynamic Programming: Solving the Curses of Dimensionality (Wiley Series in Probability and Statistics) , 2007 .

[9]  Frank E. Harrell,et al.  A new distribution-free quantile estimator , 1982 .

[10]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[11]  S. P. SEMONOVIC,et al.  Explicit stochastic approach for planning the operation of reservoirs for hydropower production , 2008 .

[12]  Hamidreza Zareipour,et al.  Impact of wind integration on electricity markets: a chance‐constrained Nash Cournot model , 2013 .

[13]  Dominik Wied,et al.  Consistency of the kernel density estimator: a survey , 2012 .

[14]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[15]  Jianqing Fan,et al.  Nonlinear Time Series : Nonparametric and Parametric Methods , 2005 .

[16]  Jeffrey S. Racine,et al.  Nonparametric Econometrics: The np Package , 2008 .

[17]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[18]  Ji Zhu,et al.  Quantile Regression in Reproducing Kernel Hilbert Spaces , 2007 .

[19]  Michael Chertkov,et al.  Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty , 2012, SIAM Rev..

[20]  A. Charnes,et al.  OPTIMAL DECISION RULES FOR THE E MODEL OF CHANCE-CONSTRAINED PROGRAMMING , 1965 .

[21]  Gonzalo Guillén-Gosálbez,et al.  A global optimization strategy for the environmentally conscious design of chemical supply chains under uncertainty in the damage assessment model , 2010, Comput. Chem. Eng..

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[24]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[25]  András Prékopa,et al.  ON PROBABILISTIC CONSTRAINED PROGRAMMING , 2015 .

[26]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[27]  Richard A. Davis,et al.  Introduction to time series and forecasting , 1998 .

[28]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[29]  I. Kuban Altinel,et al.  Scheduling of batch processes with operational uncertainties , 1996 .

[30]  Peter Hall,et al.  A simple bootstrap method for constructing nonparametric confidence bands for functions , 2013, 1309.4864.

[31]  Z. Q. Lu Statistical Inference Based on Divergence Measures , 2007 .

[32]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[33]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[34]  Morton Lane Conditional chance‐constrained model for reservoir control , 1973 .

[35]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[36]  P. G. Jairaj,et al.  Modeling Reservoir Irrigation in Uncertain Hydrologic Environment , 2003 .

[37]  C. Fiorio Confidence Intervals for Kernel Density Estimation , 2004 .

[38]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[39]  Günter Wozny,et al.  Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity , 2009, Comput. Chem. Eng..

[40]  R. Koenker Quantile Regression: Fundamentals of Quantile Regression , 2005 .

[41]  V. Melas,et al.  Robust T-optimal discriminating designs , 2013, 1309.4652.

[42]  Manfred W. Padberg,et al.  The triangular E-model of chance-constrained programming with stochastic A-matrix , 1974 .

[43]  Jeffrey S. Racine Nonparametric econometrics: a primer (in Russian) , 2008 .