Adjoint Fields and Sensitivities for 3D Electromagnetic Imaging in Isotropic and Anisotropic Media

In this paper we give an overview of a recently developed method for solving an inverse Maxwell problem in environmental and geophysical imaging. Our main focus is on low-frequency cross-borehole electromagnetic induction tomography (EMIT), although related problems arise also in other applications in nondestructive testing and medical imaging. In typical applications (e.g. in environmental rernediation), the isotropic or anisotropic conductivity distribution in the earth needs to be reconstructed from surface-to-borehole electromagnetic data. Our method uses a back-propagation strategy (based on adjoint fields) for solving this inverse problem. The method works iteratively, and can be considered as a nonlinear generalization of the Algebraic Reconstruction Technique (ART) in X-ray tomography, or as a nonlinear Kaczmarz-type approach. We will also Propose a new regularization scheme for this method which is based on a proper choice of the function spaces for the inversion. A detailed sensitivity analysis for this problem is given, and a set of numerically calculated sensitivity functions for homogeneous isotropic media is presented.

[1]  Michael S. Zhdanov,et al.  Underground imaging by frequency-domain electromagnetic migration , 1996 .

[2]  N. Holmer,et al.  Electrical Impedance Tomography , 1991 .

[3]  R. Cubeddu,et al.  Optical Tomography , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[4]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[5]  Oliver Dorn,et al.  A transport-backtransport method for optical tomography , 1998 .

[6]  David L. Alumbaugh,et al.  Theoretical and practical considerations for crosswell electromagnetic tomography assuming a cylindrical geometry , 1995 .

[7]  D. Oldenburg,et al.  METHODS FOR CALCULATING FRÉCHET DERIVATIVES AND SENSITIVITIES FOR THE NON‐LINEAR INVERSE PROBLEM: A COMPARATIVE STUDY1 , 1990 .

[8]  James G. Berryman,et al.  Matching pursuit for imaging high-contrast conductivity , 1999 .

[9]  Akhil Datta-Gupta,et al.  Resolution and uncertainty in hydrologic characterization , 1997 .

[10]  Kohn,et al.  Variational constraints for electrical-impedance tomography. , 1990, Physical review letters.

[11]  S. Arridge Optical tomography in medical imaging , 1999 .

[12]  James G. Berryman,et al.  Sensitivity analysis of a nonlinear inversion method for 3D electromagnetic imaging in anisotropic media , 2002 .

[13]  Mary L. Bouxsein,et al.  Theoretical and Practical Considerations , 2001 .

[14]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[15]  S. Arridge Photon-measurement density functions. Part I: Analytical forms. , 1995, Applied optics.

[16]  F. Natterer,et al.  A propagation-backpropagation method for ultrasound tomography , 1995 .

[17]  Douglas LaBrecque,et al.  Monitoring an underground steam injection process using electrical resistance tomography , 1993 .

[18]  H. F. Morrison,et al.  Monitoring subsurface changes over time with cross-well electromagnetic tomographyt1 , 1995 .

[19]  James G. Berryman,et al.  3D finite-difference frequency-domain code for electromagnetic induction tomography , 1998 .

[20]  Francis Arthur Jenkins,et al.  Fundamentals of Optics , 1976 .

[21]  E. Haber,et al.  On optimization techniques for solving nonlinear inverse problems , 2000 .

[22]  R. Lytle,et al.  Computerized geophysical tomography , 1979, Proceedings of the IEEE.

[23]  J. Nitao,et al.  Electrical resistivity tomography of vadose water movement , 1992 .

[24]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .

[25]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[26]  James G. Berryman,et al.  FDFD: a 3D finite-difference frequency-domain code for electromagnetic induction tomography , 2001 .

[27]  Habib Ammari,et al.  Analysis of the scattering map of a linearized inverse medium problem for electromagnetic waves , 2001 .

[28]  H. F. Morrison,et al.  Crosswell electromagnetic tomography: System design considerations and field results , 1995 .

[29]  Jon F. Claerbout,et al.  Fundamentals of Geophysical Data Processing: With Applications to Petroleum Prospecting , 1985 .

[30]  A. P. Annan,et al.  Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy , 1989 .

[31]  Manuel Kindelan,et al.  History matching problem in reservoir engineering using the propagation–backpropagation method , 2005 .

[32]  M. Schweiger,et al.  Photon-measurement density functions. Part 2: Finite-element-method calculations. , 1995, Applied optics.

[33]  O Dorn,et al.  Scattering and absorption transport sensitivity functions for optical tomography. , 2000, Optics express.

[34]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[35]  Oliver Dorn,et al.  Fréchet Derivatives for Some Bilinear Inverse Problems , 2002, SIAM J. Appl. Math..

[36]  Ki Ha Lee,et al.  Crosshole electromagnetic tomography: A new technology for oil field characterization , 1995 .

[37]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[38]  Gregory A. Newman,et al.  Three‐dimensional massively parallel electromagnetic inversion—I. Theory , 1997 .

[39]  Hansruedi Maurer,et al.  Design strategies for electromagnetic geophysical surveys , 2000 .

[40]  George A. McMechan,et al.  Acquisition and processing of wide-aperture ground-penetrating radar data , 1992 .

[41]  P. Schultz,et al.  Fundamentals of geophysical data processing , 1979 .

[42]  D. Oldenburg,et al.  Approximate sensitivities for the electromagnetic inverse problem , 1996 .

[43]  Tarek M. Habashy,et al.  Sensitivity analysis of crosswell electromagnetics , 1995 .

[44]  Douglas W. Oldenburg,et al.  Calculation of sensitivities for the frequency-domain electromagnetic problem , 1994 .