Handling equality constraints with agent-based memetic algorithms

In addition to inequality constraints, many mathematical models require equality constraints to represent the practical problems appropriately. The existence of equality constraints reduces the size of the feasible space significantly, which makes it difficult to locate feasible and optimal solutions. This paper presents a new equality constraint handling technique which enhances the performance of an agent-based evolutionary algorithm in solving constrained optimization problems with equality constraints. The technique is basically used as an agent learning process in the agent-based evolutionary algorithm. The performance of the proposed algorithm is tested on a set of well-known benchmark problems including seven new problems. The experimental results confirm the improved performance of the proposed technique.

[1]  M. Kisiel-Dorohinicki,et al.  Agent-based evolutionary multiobjective optimisation , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[3]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[4]  Jing J. Liang,et al.  Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[5]  Ju-Jang Lee,et al.  Evolving multi-agents using a self-organizing genetic algorithm , 1997 .

[6]  James Smith,et al.  A tutorial for competent memetic algorithms: model, taxonomy, and design issues , 2005, IEEE Transactions on Evolutionary Computation.

[7]  Nostrand Reinhold,et al.  the utility of using the genetic algorithm approach on the problem of Davis, L. (1991), Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York. , 1991 .

[8]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[9]  Efrn Mezura-Montes,et al.  Constraint-Handling in Evolutionary Optimization , 2009 .

[10]  Jing Liu,et al.  A multiagent evolutionary algorithm for constraint satisfaction problems , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  David Corne,et al.  A Comparative Assessment of Memetic, Evolutionary, and Constructive Algorithms on Multiobjective $d$-MST Problems , 2001 .

[12]  Ruhul A. Sarker,et al.  AMA: a new approach for solving constrained real-valued optimization problems , 2009, Soft Comput..

[13]  Yan Chen,et al.  Multi-agent based genetic algorithm for JSSP , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[14]  Christopher James Thornton,et al.  Artificial Intelligence: Strategies, Applications, and Models through SEARCH , 1998 .

[15]  Charles S. Newton,et al.  Evolutionary Optimization (Evopt): A Brief Review And Analysis , 2003, Int. J. Comput. Intell. Appl..

[16]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[17]  A. Alkan,et al.  Memetic algorithms for timetabling , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[18]  John J. Grefenstette,et al.  Proceedings of the 1st International Conference on Genetic Algorithms , 1985 .

[19]  K. A. De Jong,et al.  Evolving intelligent agents: A 50 year quest , 2008, IEEE Comput. Intell. Mag..

[20]  Pei Yee Ho,et al.  Evolutionary constrained optimization using an addition of ranking method and a percentage-based tolerance value adjustment scheme , 2007, Inf. Sci..

[21]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[22]  Tetsuyuki Takahama,et al.  Solving Difficult Constrained Optimization Problems by the ε Constrained Differential Evolution with Gradient-Based Mutation , 2009 .

[23]  Xiaolin Hu,et al.  Hybridization of the multi-objective evolutionary algorithms and the gradient-based algorithms , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[24]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[25]  Robert Schaefer,et al.  Formal model for agent-based asynchronous evolutionary computation , 2009, 2009 IEEE Congress on Evolutionary Computation.

[26]  Cristiano Castelfranchi,et al.  Proceedings of the 7th International Workshop on Intelligent Agents VII. Agent Theories Architectures and Languages , 2000 .

[27]  Joshua D. Knowles,et al.  Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects , 2004 .

[28]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[29]  Jing Tang,et al.  Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems , 2006, Soft Comput..

[30]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[31]  Carlos A. Coello Coello,et al.  Handling Constraints in Genetic Algorithms Using Dominance-based Tournaments , 2002 .

[32]  W. Hart Adaptive global optimization with local search , 1994 .

[33]  Zbigniew Michalewicz,et al.  Evolutionary algorithms , 1997, Emerging Evolutionary Algorithms for Antennas and Wireless Communications.

[34]  Ruhul A. Sarker,et al.  Memetic algorithms for solving job-shop scheduling problems , 2009, Memetic Comput..

[35]  Haralambos Sarimveis,et al.  A line up evolutionary algorithm for solving nonlinear constrained optimization problems , 2005, Comput. Oper. Res..

[36]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[37]  Jing Liu,et al.  Job-Shop Scheduling Based on Multiagent Evolutionary Algorithm , 2005, ICNC.

[38]  Marek Kisiel-Dorohinicki Agent-Oriented Model of Simulated Evolution , 2002, SOFSEM.

[39]  Javier Bajo,et al.  Multiagent Architecture for Monitoring the North-Atlantic Carbon Dioxide Exchange Rate , 2005, CAEPIA.

[40]  Stephen Gilmore,et al.  Combining Measurement and Stochastic Modelling to Enhance Scheduling Decisions for a Parallel Mean Value Analysis Algorithm , 2006, International Conference on Computational Science.

[41]  Edmund K. Burke,et al.  A memetic algorithm to schedule planned maintenance for the national grid , 1999, JEAL.

[42]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[43]  Mitsuo Gen,et al.  Parallel machine scheduling problems using memetic algorithms , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[44]  Zbigniew Michalewicz,et al.  A Note on Usefulness of Geometrical Crossover for Numerical Optimization Problems , 1996, Evolutionary Programming.

[45]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[46]  Carlos A. Coello Coello,et al.  THEORETICAL AND NUMERICAL CONSTRAINT-HANDLING TECHNIQUES USED WITH EVOLUTIONARY ALGORITHMS: A SURVEY OF THE STATE OF THE ART , 2002 .

[47]  Paul Davidsson,et al.  On the Integration of Agent-Based and Mathematical Optimization Techniques , 2007, KES-AMSTA.

[48]  Anbo Meng,et al.  Genetic algorithm based multi-agent system applied to test generation , 2007, Comput. Educ..

[49]  Massimiliano Vasile,et al.  A hybrid multiagent approach for global trajectory optimization , 2009, J. Glob. Optim..

[50]  Ruhul A. Sarker,et al.  An agent-based memetic algorithm (AMA) for solving constrained optimazation problems , 2007, 2007 IEEE Congress on Evolutionary Computation.

[51]  Ruhul A. Sarker,et al.  Search space reduction technique for constrained optimization with tiny feasible space , 2008, GECCO '08.

[52]  Jiming Liu,et al.  A genetic agent-based negotiation system , 2001, Comput. Networks.

[53]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[54]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[55]  Hussein A. Abbass,et al.  Land Combat Scenario Planning: A Multiobjective Approach , 2006, SEAL.

[56]  Anthony Chen,et al.  Constraint handling in genetic algorithms using a gradient-based repair method , 2006, Comput. Oper. Res..

[57]  Arthur C. Graesser,et al.  Is it an Agent, or Just a Program?: A Taxonomy for Autonomous Agents , 1996, ATAL.

[58]  Terence C. Fogarty,et al.  A Genetic Algorithm with Variable Range of Local Search for Tracking Changing Environments , 1996, PPSN.

[59]  Ruhul A. Sarker,et al.  A Simple Ranking and Selection for Constrained Evolutionary Optimization , 2006, SEAL.

[60]  Ruhul A. Sarker,et al.  An Evolutionary Agent System for Mathematical Programming , 2007, ISICA.

[61]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[62]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[63]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[64]  B. Freisleben,et al.  A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[65]  Marek Kisiel-Dorohinicki,et al.  Semi-elitist Evolutionary Multi-agent System for Multiobjective Optimization , 2006, International Conference on Computational Science.

[66]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[67]  Hisao Ishibuchi,et al.  Performance evaluation of combined cellular genetic algorithms for function optimization problems , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[68]  Marek Kisiel-Dorohinicki,et al.  Maintaining Diversity in Agent-Based Evolutionary Computation , 2006, International Conference on Computational Science.

[69]  David E. Goldberg,et al.  Optimizing Global-Local Search Hybrids , 1999, GECCO.

[70]  Parag C. Pendharkar,et al.  The theory and experiments of designing cooperative intelligent systems , 2007, Decis. Support Syst..

[71]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[72]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[73]  Frederico G. Guimarães,et al.  Constraint quadratic approximation operator for treating equality constraints with genetic algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[74]  C. Coello,et al.  CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE , 2000 .

[75]  C.S. Sahin,et al.  Uniform distribution of mobile agents using genetic algorithms for military applications in MANETs , 2008, MILCOM 2008 - 2008 IEEE Military Communications Conference.

[76]  Jing Liu,et al.  A multiagent genetic algorithm for global numerical optimization , 2004, IEEE Trans. Syst. Man Cybern. Part B.

[77]  Paul Kearney,et al.  Evolutionary Adaptation in Autonomous Agent Systems — A Paradigm for the Emerging Enterprise , 1999 .

[78]  Chee Keong Kwoh,et al.  Classification-Assisted Memetic Algorithms for Equality-Constrained Optimization Problems , 2009, Australasian Conference on Artificial Intelligence.

[79]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[80]  Dumitru Dumitrescu,et al.  Exploring population geometry and multi-agent systems: a new approach to developing evolutionary techniques , 2008, GECCO '08.

[81]  Meng Joo Er,et al.  Solving large scale combinatorial optimization using PMA-SLS , 2005, GECCO '05.

[82]  Jing Tang,et al.  Adaptation for parallel memetic algorithm based on population entropy , 2006, GECCO '06.

[83]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[84]  Hong Liu,et al.  Supporting evolution in a multi-agent cooperative design environment , 2002 .

[85]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[86]  Tapabrata Ray,et al.  Multiobjective Evolutionary Algorithms for solving Constrained Optimization Problems , 2005, International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06).

[87]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[88]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[89]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[90]  Gary G. Yen,et al.  A generic framework for constrained optimization using genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[91]  Ruhul A. Sarker,et al.  An Agent-based Memetic Algorithm (AMA) for nonlinear optimization with equality constraints , 2009, 2009 IEEE Congress on Evolutionary Computation.

[92]  Tapabrata Ray,et al.  Genetic algorithm for solving a gas lift optimization problem , 2007 .

[93]  Cem Safak Sahin,et al.  Genetic algorithms for self-spreading nodes in MANETs , 2008, GECCO '08.