Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues

Let X be a translation invariant point process on the complex plane and let D be a bounded open set whose boundary has zero Lebesgue measure. We ask what does the point configuration obtained by taking the points of X outside D tell us about the point configuration inside D? We show that for the Ginibre ensemble, it determines the number of points in D. For the translation-invariant zero process of a planar Gaussian Analytic Function, we show that it determines the number as well as the centre of mass of the points in D. Further, in both models we prove that the outside says "nothing more" about the inside, in the sense that the conditional distribution of the inside points, given the outside, is mutually absolutely continuous with respect to the Lebesgue measure on its supporting submanifold.

[1]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[2]  Rigidity and tolerance for perturbed lattices , 2014, 1409.4490.

[3]  J. Norris Appendix: probability and measure , 1997 .

[4]  Rigidity and Tolerance in Gaussian zeroes and Ginibre eigenvalues: quantitative estimates , 2012, 1211.3506.

[5]  Subhro Ghosh Determinantal processes and completeness of random exponentials: the critical case , 2012, 1211.2435.

[6]  R. Stanley Enumerative Combinatorics: Volume 1 , 2011 .

[7]  R. Cooke Real and Complex Analysis , 2011 .

[8]  S. Zelditch Large deviations of empirical measures of zeros on Riemann surfaces , 2011, 1101.0417.

[9]  S. Zelditch,et al.  Random zeros on complex manifolds: conditional expectations , 2010, Journal of the Institute of Mathematics of Jussieu.

[10]  A. Holroyd,et al.  Insertion and deletion tolerance of point processes , 2010, 1007.3538.

[11]  F. Nazarov,et al.  Fluctuations in random complex zeroes: Asymptotic normality revisited , 2010, 1003.4251.

[12]  F. Nazarov,et al.  Random Complex Zeroes and Random Nodal Lines , 2010, 1003.4237.

[13]  Andrew L. Goldman The Palm measure and the Voronoi tessellation for the Ginibre process , 2006, math/0610243.

[14]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[15]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[16]  P. Deift,et al.  Random Matrix Theory: Invariant Ensembles and Universality , 2009 .

[17]  Manjunath Krishnapur Zeros of Random Analytic Functions , 2006, math/0607504.

[18]  B. Rider,et al.  The Noise in the Circular Law and the Gaussian Free Field , 2006, math/0606663.

[19]  A. Volberg,et al.  Transportation to Random Zeroes by the Gradient Flow , 2005, math/0510654.

[20]  Yuval Peres,et al.  Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process , 2003, math/0310297.

[21]  Alexander E. Holroyd,et al.  Extra heads and invariant allocations , 2003, math/0306402.

[22]  Boris Tsirelson,et al.  Random complex zeroes, III. Decay of the hole probability , 2003 .

[23]  B. Tsirelson,et al.  Random complex zeroes, II. Perturbed lattice , 2003, math/0309449.

[24]  B. Tsirelson,et al.  Random complex zeroes, I. Asymptotic normality , 2002, math/0210090.

[25]  R. Lyons Determinantal probability measures , 2002, math/0204325.

[26]  R. Lyons,et al.  Change Intolerance in Spanning Forests , 2001, math/0102230.

[27]  M. Sodin Zeroes of Gaussian analytic functions , 2000, math/0410343.

[28]  P. Forrester,et al.  Exact statistical properties of the zeros of complex random polynomials , 1998, cond-mat/9812388.

[29]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[30]  R. Burton,et al.  Density and uniqueness in percolation , 1989 .

[31]  V. Strassen The Existence of Probability Measures with Given Marginals , 1965 .

[32]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[33]  O. Gaans Probability measures on metric spaces , 2022 .