Challenges for biophysical modeling of microstructure

The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible. The model performance should necessarily be tested in realistic numerical simulations and in experimental data - adapting the fitting strategy accordingly, and parameter estimates should be validated against complementary techniques, when/if available. Secondly, the model performance and validity should be explored in pathological conditions, and, if appropriate, dedicated models for pathology should be developed. We build on examples from tumors, ischemia and demyelinating diseases. We then discuss the challenges associated with clinical translation and added value. Finally, we single out four major unresolved challenges that are related to: the availability of a microstructural ground truth, the validation of model parameters which cannot be accessed with complementary techniques, the development of a generalized standard model for any brain region and pathology, and the seamless communication between different parties involved in the development and application of biophysical models of diffusion.

[1]  T. Duong,et al.  Extracellular apparent diffusion in rat brain , 2001, Magnetic resonance in medicine.

[2]  K. Svoboda,et al.  Time-dependent diffusion of water in a biological model system. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[4]  D. Alexander,et al.  Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology? , 2017, Annals of clinical and translational neurology.

[5]  C. Hardy,et al.  Accelerated diffusion spectrum imaging in the human brain using compressed sensing , 2011, Magnetic resonance in medicine.

[6]  Ping Zhao,et al.  In vivo imaging of cancer cell size and cellularity using temporal diffusion spectroscopy , 2017, Magnetic resonance in medicine.

[7]  Philippe Hantraye,et al.  Anomalous Diffusion of Brain Metabolites Evidenced by Diffusion-Weighted Magnetic Resonance Spectroscopy in Vivo , 2012, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[8]  J. Kurhanewicz,et al.  Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. , 1990, AJNR. American journal of neuroradiology.

[9]  Gareth J. Barker,et al.  Optimal imaging parameters for fiber-orientation estimation in diffusion MRI , 2005, NeuroImage.

[10]  Daniel C. Alexander,et al.  Microstructure Imaging Sequence Simulation Toolbox , 2016, SASHIMI@MICCAI.

[11]  Itamar Ronen,et al.  Differences in apparent diffusion coefficients of brain metabolites between grey and white matter in the human brain measured at 7 T , 2012, Magnetic resonance in medicine.

[12]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[13]  Piotr Kozlowski,et al.  Myelin water imaging of multiple sclerosis at 7 T: Correlations with histopathology , 2008, NeuroImage.

[14]  Brian Hansen,et al.  Precision and accuracy of diffusion kurtosis estimation and the influence of b‐value selection , 2017, NMR in biomedicine.

[15]  A. McKinney,et al.  Review of diffuse cortical injury on diffusion-weighted imaging in acutely encephalopathic patients with an acronym: “CRUMPLED”☆ , 2018, European journal of radiology open.

[16]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[17]  Matt Hall,et al.  Resolving axon fiber crossings at clinical b-values: an evaluation study. , 2011, Medical physics.

[18]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[19]  Allen W. Song,et al.  Human brain diffusion tensor imaging at submillimeter isotropic resolution on a 3Tesla clinical MRI scanner , 2015, NeuroImage.

[20]  Cheng Guan Koay,et al.  Optimization of a free water elimination two-compartment model for diffusion tensor imaging , 2014, NeuroImage.

[21]  Peter J. Basser,et al.  Magnetic resonance microdynamic imaging reveals distinct tissue microenvironments , 2017, NeuroImage.

[22]  David Atkinson,et al.  VERDICT‐AMICO: Ultrafast fitting algorithm for non‐invasive prostate microstructure characterization , 2018, NMR in biomedicine.

[23]  Dmitry S. Novikov,et al.  Probing axon caliber variations and beading with time-dependent diffusion MRI , 2019 .

[24]  Mara Cercignani,et al.  From micro‐ to macro‐structures in multiple sclerosis: what is the added value of diffusion imaging , 2019, NMR in biomedicine.

[25]  D. Le Bihan,et al.  Diffusion Microscopist Simulator: A General Monte Carlo Simulation System for Diffusion Magnetic Resonance Imaging , 2013, PloS one.

[26]  Kathryn L. West,et al.  Evaluation of diffusion kurtosis imaging in ex vivo hypomyelinated mouse brains , 2016, NeuroImage.

[27]  Mark F. Lythgoe,et al.  Two-Compartment Models of the Diffusion MR Signal in Brain White Matter , 2009, MICCAI.

[28]  M. Helmstaedter,et al.  Dense connectomic reconstruction in layer 4 of the somatosensory cortex , 2018, Science.

[29]  Jean-Philippe Thiran,et al.  Accelerated Microstructure Imaging via Convex Optimization (AMICO) from diffusion MRI data , 2015, NeuroImage.

[30]  S. Nagarajan,et al.  White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation , 2015, PloS one.

[31]  John C Gore,et al.  Impact of transcytolemmal water exchange on estimates of tissue microstructural properties derived from diffusion MRI , 2017, Magnetic resonance in medicine.

[32]  Gabriel Girard,et al.  Robust Monte-Carlo Simulations in Diffusion-MRI: Effect of the Substrate Complexity and Parameter Choice on the Reproducibility of Results , 2020, Frontiers in Neuroinformatics.

[33]  Marco Palombo,et al.  Brain Metabolite Diffusion from Ultra-Short to Ultra-Long Time Scales: What Do We Learn, Where Should We Go? , 2018, Front. Neurosci..

[34]  Mark H. Johnson,et al.  Mapping Infant Brain Myelination with Magnetic Resonance Imaging , 2011, The Journal of Neuroscience.

[35]  Marco Palombo,et al.  Metabolite diffusion up to very high b in the mouse brain in vivo: Revisiting the potential correlation between relaxation and diffusion properties , 2016, Magnetic resonance in medicine.

[36]  Leif Østergaard,et al.  Modeling dendrite density from magnetic resonance diffusion measurements , 2007, NeuroImage.

[37]  A. Schwartzman,et al.  Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion‐compartment imaging (DIAMOND) , 2016, Magnetic resonance in medicine.

[38]  Julien Cohen-Adad,et al.  g-Ratio weighted imaging of the human spinal cord in vivo , 2017, NeuroImage.

[39]  Markus Nilsson,et al.  Monte Carlo Simulations of Water Exchange Through Myelin Wraps: Implications for Diffusion MRI , 2019, IEEE Transactions on Medical Imaging.

[40]  Jürgen Hennig,et al.  Disentangling micro from mesostructure by diffusion MRI: A Bayesian approach , 2017, NeuroImage.

[41]  Rainer Goebel,et al.  Robust and fast nonlinear optimization of diffusion MRI microstructure models , 2017, NeuroImage.

[42]  Dmitry S. Novikov,et al.  Mesoscopic structure of neuronal tracts from time-dependent diffusion , 2015, NeuroImage.

[43]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[44]  Gregory T. Balls,et al.  A simulation environment for diffusion weighted MR experiments in complex media , 2009, Magnetic resonance in medicine.

[45]  Fang-Cheng Yeh,et al.  Generalized ${ q}$-Sampling Imaging , 2010, IEEE Transactions on Medical Imaging.

[46]  P. Basser,et al.  In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. , 2009, Brain : a journal of neurology.

[47]  Markus Nilsson,et al.  Time‐dependent diffusion in undulating thin fibers: Impact on axon diameter estimation , 2019, NMR in biomedicine.

[48]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[49]  Jan Sijbers,et al.  Super‐resolution reconstruction of diffusion parameters from diffusion‐weighted images with different slice orientations , 2016, Magnetic resonance in medicine.

[50]  A S Verkman,et al.  Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry , 1991, The Journal of cell biology.

[51]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[52]  F. Ståhlberg,et al.  The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter , 2013, Magnetic Resonance Materials in Physics, Biology and Medicine.

[53]  Donghan M Yang,et al.  Intracellular water preexchange lifetime in neurons and astrocytes , 2018, Magnetic resonance in medicine.

[54]  F. Ståhlberg,et al.  The importance of axonal undulation in diffusion MR measurements: a Monte Carlo simulation study , 2012, NMR in biomedicine.

[55]  Simon J. Graham,et al.  Neuroimaging of sport concussion: persistent alterations in brain structure and function at medical clearance , 2017, Scientific Reports.

[56]  R. Deriche,et al.  Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging , 2015, Magnetic resonance in medicine.

[57]  Nikolaus Weiskopf,et al.  Microstructural imaging of human neocortex in vivo , 2018, NeuroImage.

[58]  Mark F. Lythgoe,et al.  Compartment models of the diffusion MR signal in brain white matter: A taxonomy and comparison , 2012, NeuroImage.

[59]  C. Westin,et al.  Towards unconstrained compartment modeling in white matter using diffusion‐relaxation MRI with tensor‐valued diffusion encoding , 2020, Magnetic resonance in medicine.

[60]  A. Dale,et al.  Quantitative Histological Validation of Diffusion MRI Fiber Orientation Distributions in the Rat Brain , 2010, PloS one.

[61]  M. Mallar Chakravarty,et al.  Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy , 2010, NeuroImage.

[62]  Mark F. Lythgoe,et al.  High-Fidelity Meshes from Tissue Samples for Diffusion MRI Simulations , 2010, MICCAI.

[63]  H. Barnhart,et al.  The emerging science of quantitative imaging biomarkers terminology and definitions for scientific studies and regulatory submissions , 2015, Statistical methods in medical research.

[64]  Ganesh Adluru,et al.  Assessment of white matter microstructure in stroke patients using NODDI , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[65]  M. Palombo,et al.  Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion‐weighting: Diffusion in long fibers (almost) accounts for non‐monoexponential attenuation , 2017, Magnetic resonance in medicine.

[66]  Jelle Veraart,et al.  Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms , 2019, NeuroImage.

[67]  Chris A Clark,et al.  In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI , 2019, Magnetic resonance in medicine.

[68]  J. Gore,et al.  Oscillating gradient measurements of water diffusion in normal and globally ischemic rat brain , 2003, Magnetic resonance in medicine.

[69]  Julien Cohen-Adad,et al.  The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter , 2015, NeuroImage.

[70]  Ke Xu,et al.  Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity , 2020, Nature Methods.

[71]  Yogesh Rathi,et al.  High‐resolution in vivo diffusion imaging of the human brain with generalized slice dithered enhanced resolution: Simultaneous multislice (gSlider‐SMS) , 2018, Magnetic resonance in medicine.

[72]  P. Mitra,et al.  Conventions and nomenclature for double diffusion encoding NMR and MRI , 2016, Magnetic resonance in medicine.

[73]  Derek K. Jones,et al.  The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain , 2019, NeuroImage.

[74]  Hui Zhang,et al.  Imaging brain microstructure with diffusion MRI: practicality and applications , 2019, NMR in biomedicine.

[75]  de Swiet TM,et al.  Possible Systematic Errors in Single-Shot Measurements of the Trace of the Diffusion Tensor , 1996, Journal of magnetic resonance. Series B.

[76]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[77]  Chuyang Ye,et al.  An improved deep network for tissue microstructure estimation with uncertainty quantification , 2020, Medical Image Anal..

[78]  Jean-Philippe Thiran,et al.  Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge , 2019, Journal of magnetic resonance imaging : JMRI.

[79]  Youssef Zaim Wadghiri,et al.  Pulsed and oscillating gradient MRI for assessment of cell size and extracellular space (POMACE) in mouse gliomas , 2016, NMR in biomedicine.

[80]  Jürgen Finsterbusch,et al.  Towards compartment size estimation in vivo based on double wave vector diffusion weighting , 2011, NMR in biomedicine.

[81]  Daniel C. Alexander,et al.  Multi-compartment microscopic diffusion imaging , 2016, NeuroImage.

[82]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[83]  Yogesh Rathi,et al.  Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters , 2019, NeuroImage.

[84]  Cyril Poupon,et al.  Improving the Realism of White Matter Numerical Phantoms: A Step toward a Better Understanding of the Influence of Structural Disorders in Diffusion MRI , 2018, Front. Phys..

[85]  Lawrence L. Wald,et al.  High-gradient diffusion MRI reveals distinct estimates of axon diameter index within different white matter tracts in the in vivo human brain , 2019, Brain Structure and Function.

[86]  Rachid Deriche,et al.  The Dmipy Toolbox: Diffusion MRI Multi-Compartment Modeling and Microstructure Recovery Made Easy , 2019, Front. Neuroinform..

[87]  Roland Kreis,et al.  Magnetic resonance spectroscopy extended by oscillating diffusion gradients: Cell-specific anomalous diffusion as a probe for tissue microstructure in human brain , 2019, NeuroImage.

[88]  Daniel Topgaard,et al.  Multidimensional diffusion MRI. , 2017, Journal of magnetic resonance.

[89]  Stefan Skare,et al.  How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging , 2003, NeuroImage.

[90]  K. Trinkaus,et al.  Quantification of increased cellularity during inflammatory demyelination. , 2011, Brain : a journal of neurology.

[91]  Derek K. Jones,et al.  Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter , 2016, NeuroImage.

[92]  Matteo Mancini,et al.  A multimodal computational pipeline for 3D histology of the human brain , 2020, Scientific Reports.

[93]  L. Reuss Water Transport Across Cell Membranes , 2012 .

[94]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[95]  Daniel Cremers,et al.  q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans , 2016, IEEE Transactions on Medical Imaging.

[96]  C. Beaulieu,et al.  Water diffusion in the giant axon of the squid: Implications for diffusion‐weighted MRI of the nervous system , 1994, Magnetic resonance in medicine.

[97]  Simon K. Warfield,et al.  Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions , 2012, Medical Image Anal..

[98]  Markus Nilsson,et al.  Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding , 2017, NeuroImage.

[99]  T. Duong,et al.  Evaluation of extra‐ and intracellular apparent diffusion in normal and globally ischemic rat brain via 19F NMR , 1998, Magnetic resonance in medicine.

[100]  K. Luby-Phelps,et al.  A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. , 1993, Biophysical journal.

[101]  Jelle Veraart,et al.  TE dependent Diffusion Imaging (TEdDI) distinguishes between compartmental T 2 relaxation times , 2017, NeuroImage.

[102]  L. Savtchenko,et al.  Nanoscale diffusion in the synaptic cleft and beyond measured with time-resolved fluorescence anisotropy imaging , 2017, Scientific Reports.

[103]  Jasper Snoek,et al.  Multi-Task Bayesian Optimization , 2013, NIPS.

[104]  David B Berry,et al.  Relationships between tissue microstructure and the diffusion tensor in simulated skeletal muscle , 2018, Magnetic resonance in medicine.

[105]  Timothy H Murphy,et al.  Two-Photon Imaging of Stroke Onset In Vivo Reveals That NMDA-Receptor Independent Ischemic Depolarization Is the Major Cause of Rapid Reversible Damage to Dendrites and Spines , 2008, The Journal of Neuroscience.

[106]  Stephen J. Price,et al.  Non-invasive assessment of glioma microstructure using VERDICT MRI: correlation with histology , 2019, European Radiology.

[107]  Carl-Fredrik Westin,et al.  Quantification of microscopic diffusion anisotropy disentangles effects of orientation dispersion from microstructure: Applications in healthy volunteers and in brain tumors , 2015, NeuroImage.

[108]  F. Ståhlberg,et al.  Evaluating the accuracy and precision of a two-compartment Kärger model using Monte Carlo simulations. , 2010, Journal of magnetic resonance.

[109]  Stephen M. Smith,et al.  Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes , 2018, NeuroImage.

[110]  D. Reich,et al.  Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy , 2020, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[111]  Paul T. Callaghan,et al.  Frequency-Domain Analysis of Spin Motion Using Modulated-Gradient NMR , 1995 .

[112]  Yaniv Assaf,et al.  Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain , 2005, NeuroImage.

[113]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[114]  Peter Savadjiev,et al.  Multi-site harmonization of diffusion MRI data in a registration framework , 2017, Brain Imaging and Behavior.

[115]  Daniel C. Alexander,et al.  ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation , 2020, NeuroImage.

[116]  D. Alexander A general framework for experiment design in diffusion MRI and its application in measuring direct tissue‐microstructure features , 2008, Magnetic resonance in medicine.

[117]  Jelle Veraart,et al.  In vivo observation and biophysical interpretation of time-dependent diffusion in human white matter , 2016, NeuroImage.

[118]  Els Fieremans,et al.  Revealing mesoscopic structural universality with diffusion , 2014, Proceedings of the National Academy of Sciences.

[119]  Daniel C. Alexander,et al.  Machine learning based compartment models with permeability for white matter microstructure imaging , 2017, NeuroImage.

[120]  Michael J. O'Donovan,et al.  Magnetic resonance measurements of cellular and sub-cellular membrane structures in live and fixed neural tissue , 2019, eLife.

[121]  Karsten Nielsen,et al.  In Vitro Magnetic Stimulation of Pig Phrenic Nerve With Transverse and Longitudinal Induced Electric Fields: Analysis of the Stimulation Site , 2009, IEEE Transactions on Biomedical Engineering.

[122]  Stéphane Lehéricy,et al.  Magnetic resonance imaging of the substantia nigra in Parkinson's disease , 2012, Movement disorders : official journal of the Movement Disorder Society.

[123]  Wolfram Burgard,et al.  Active Policy Learning for Robot Planning and Exploration under Uncertainty , 2008 .

[124]  Christopher D. Kroenke,et al.  Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database , 2013, Front. Integr. Neurosci..

[125]  João P de Almeida Martins,et al.  Accuracy and precision of statistical descriptors obtained from multidimensional diffusion signal inversion algorithms , 2020, NMR in biomedicine.

[126]  R. Goebel,et al.  Histological validation of high-resolution DTI in human post mortem tissue , 2015, Front. Neuroanat..

[127]  Xia Li,et al.  Accuracy of image registration between MRI and light microscopy in the ex vivo brain. , 2011, Magnetic resonance imaging.

[128]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[129]  Martijn Froeling,et al.  “MASSIVE” brain dataset: Multiple acquisitions for standardization of structural imaging validation and evaluation , 2017, Magnetic resonance in medicine.

[130]  Oliver Bücker,et al.  Estimating Fiber Orientation Distribution Functions in 3D-Polarized Light Imaging , 2016, Front. Neuroanat..

[131]  Christopher D. Kroenke,et al.  Determination of Axonal and Dendritic Orientation Distributions Within the Developing Cerebral Cortex by Diffusion Tensor Imaging , 2012, IEEE Transactions on Medical Imaging.

[132]  Dmitry S. Novikov,et al.  What dominates the time dependence of diffusion transverse to axons: Intra- or extra-axonal water? , 2017, NeuroImage.

[133]  Jeff H. Duyn,et al.  Studying brain microstructure with magnetic susceptibility contrast at high-field , 2017, NeuroImage.

[134]  J. Jonas,et al.  Histomorphometry of the human optic nerve. , 1990, Investigative ophthalmology & visual science.

[135]  Denis Grebenkov,et al.  Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees. , 2015, Journal of magnetic resonance.

[136]  C. Beaulieu,et al.  Reduction of Diffusion-Weighted Imaging Contrast of Acute Ischemic Stroke at Short Diffusion Times , 2015, Stroke.

[137]  Christophe Lenglet,et al.  Structure tensor analysis of serial optical coherence scanner images for mapping fiber orientations and tractography in the brain , 2015, Journal of biomedical optics.

[138]  Klaus-Armin Nave,et al.  Electron microscopy of myelin: Structure preservation by high-pressure freezing , 2016, Brain Research.

[139]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[140]  M. Budde,et al.  Microstructural organization of axons in the human corpus callosum quantified by diffusion-weighted magnetic resonance spectroscopy of N-acetylaspartate and post-mortem histology , 2014, Brain Structure and Function.

[141]  Carl-Fredrik Westin,et al.  Resolution limit of cylinder diameter estimation by diffusion MRI: The impact of gradient waveform and orientation dispersion , 2017, NMR in biomedicine.

[142]  M. Reisert,et al.  A unique analytical solution of the white matter standard model using linear and planar encodings , 2018, Magnetic resonance in medicine.

[143]  Jens H Jensen,et al.  Evaluating kurtosis‐based diffusion MRI tissue models for white matter with fiber ball imaging , 2017, NMR in biomedicine.

[144]  Nando de Freitas,et al.  Adaptive MCMC with Bayesian Optimization , 2012, AISTATS.

[145]  Julien Cohen-Adad,et al.  In vivo mapping of human spinal cord microstructure at 300mT/m , 2015, NeuroImage.

[146]  Bibek Dhital,et al.  The absence of restricted water pool in brain white matter , 2017, NeuroImage.

[147]  Daniel C Alexander,et al.  Noninvasive quantification of solid tumor microstructure using VERDICT MRI. , 2014, Cancer research.

[148]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[149]  Els Fieremans,et al.  Physical and numerical phantoms for the validation of brain microstructural MRI: A cookbook , 2018, NeuroImage.

[150]  Yogesh Rathi,et al.  Fast and Accurate Reconstruction of HARDI Data Using Compressed Sensing , 2010, MICCAI.

[151]  D. Le Bihan,et al.  Brain tissue water comes in two pools: Evidence from diffusion and R2’ measurements with USPIOs in non human primates , 2012, NeuroImage.

[152]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[153]  Itamar Ronen,et al.  Cytosolic diffusivity and microscopic anisotropy of N‐acetyl aspartate in human white matter with diffusion‐weighted MRS at 7 T , 2020, NMR in biomedicine.

[154]  Carlo Pierpaoli,et al.  Analysis of the effects of noise, DWI sampling, and value of assumed parameters in diffusion MRI models , 2017, Magnetic resonance in medicine.

[155]  Rachid Deriche,et al.  Quantitative Comparison of Reconstruction Methods for Intra-Voxel Fiber Recovery From Diffusion MRI , 2014, IEEE Transactions on Medical Imaging.

[156]  L. Hedlund,et al.  Mechanism of Detection of Acute Cerebral Ischemia in Rats by Diffusion‐Weighted Magnetic Resonance Microscopy , 1992, Stroke.

[157]  J. Helpern,et al.  Monte Carlo study of a two‐compartment exchange model of diffusion , 2010, NMR in biomedicine.

[158]  Society of magnetic resonance in medicine , 1990 .

[159]  Susan M. Chang,et al.  Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T , 2015, NeuroImage: Clinical.

[160]  Ann S. Choe,et al.  Validation of diffusion tensor MRI in the central nervous system using light microscopy: quantitative comparison of fiber properties , 2012, NMR in biomedicine.

[161]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[162]  Daniel C. Alexander,et al.  Contextual Fibre Growth to Generate Realistic Axonal Packing for Diffusion MRI Simulation , 2019, IPMI.

[163]  Yuval Zur,et al.  Mapping apparent eccentricity and residual ensemble anisotropy in the gray matter using angular double‐pulsed‐field‐gradient MRI , 2012, Magnetic resonance in medicine.

[164]  Ahmad Raza Khan,et al.  3D structure tensor analysis of light microscopy data for validating diffusion MRI , 2015, NeuroImage.

[165]  Charles S Springer,et al.  Equilibrium water exchange between the intra‐ and extracellular spaces of mammalian brain , 2003, Magnetic resonance in medicine.

[166]  Felix W. Wehrli,et al.  Quantifying axon diameter and intra-cellular volume fraction in excised mouse spinal cord with q-space imaging , 2010, NeuroImage.

[167]  Bruce R. Rosen,et al.  Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI , 2019, NeuroImage.

[168]  David H. Miller,et al.  Sensitivity of multi-shell NODDI to multiple sclerosis white matter changes: a pilot study. , 2017, Functional neurology.

[169]  Daniel C. Alexander,et al.  Current Applications and Future Promises of Machine Learning in Diffusion MRI , 2019, Computational Diffusion MRI.

[170]  Hui Zhang,et al.  A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal , 2018, NeuroImage.

[171]  J. Helpern,et al.  Stroke Assessment With Diffusional Kurtosis Imaging , 2012, Stroke.

[172]  Ramana V. Grandhi,et al.  A Bayesian approach for quantification of model uncertainty , 2010, Reliab. Eng. Syst. Saf..

[173]  Vaibhav A. Janve,et al.  Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? , 2017, NMR in biomedicine.

[174]  Luca Passamonti,et al.  Multishell diffusion imaging reveals sex-specific trajectories of early white matter degeneration in normal aging , 2019, Neurobiology of Aging.

[175]  Daniel C Alexander,et al.  Probing axons using multi‐compartmental diffusion in multiple sclerosis , 2019, Annals of clinical and translational neurology.

[176]  Carl-Fredrik Westin,et al.  Q-space trajectory imaging for multidimensional diffusion MRI of the human brain , 2016, NeuroImage.

[177]  S. Aoki,et al.  Quantitative Histological Validation of Diffusion Tensor MRI with Two-Photon Microscopy of Cleared Mouse Brain , 2016, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[178]  Daniel C. Alexander,et al.  Modelling, Fitting and Sampling in Diffusion MRI , 2009 .

[179]  M. Koch,et al.  A tensor model and measures of microscopic anisotropy for double-wave-vector diffusion-weighting experiments with long mixing times. , 2010, Journal of magnetic resonance.

[180]  C. Westin,et al.  Searching for the neurite density with diffusion MRI: Challenges for biophysical modeling , 2018, Human brain mapping.

[181]  V. Kiselev,et al.  Effective medium theory of a diffusion‐weighted signal , 2010, NMR in biomedicine.

[182]  Stephen J. Wright,et al.  Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .

[183]  Daniel C. Alexander,et al.  In vivo Estimation of Dispersion Anisotropy of Neurites Using Diffusion MRI , 2014, MICCAI.

[184]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[185]  Carl-Fredrik Westin,et al.  A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging , 2016, NeuroImage.

[186]  Bennett A Landman,et al.  Complex geometric models of diffusion and relaxation in healthy and damaged white matter , 2009, NMR in biomedicine.

[187]  D. Cory,et al.  Multiple Scattering by NMR , 1999 .

[188]  P. Basser,et al.  Axcaliber: A method for measuring axon diameter distribution from diffusion MRI , 2008, Magnetic resonance in medicine.

[189]  C. Beaulieu,et al.  Anisotropic diffusion of metabolites in peripheral nerve using diffusion weighted magnetic resonance spectroscopy at ultra-high field. , 2007, Journal of magnetic resonance.

[190]  Carl-Fredrik Westin,et al.  The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE) , 2016, NeuroImage.

[191]  J. Kucharczyk,et al.  Early detection of regional cerebral ischemia in cats: Comparison of diffusion‐ and T2‐weighted MRI and spectroscopy , 1990, Magnetic resonance in medicine.

[192]  Gabriel Girard,et al.  Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI , 2019, NeuroImage.

[193]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[194]  Isabelle Leclercq,et al.  Insights into tissue microstructure using a double diffusion encoding sequence on a clinical scanner: Validation and application to experimental tumor models , 2020, Magnetic resonance in medicine.

[195]  Mathews Jacob,et al.  Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data , 2015, Magnetic resonance in medicine.

[196]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[197]  Rachid Deriche,et al.  Assessing the feasibility of estimating axon diameter using diffusion models and machine learning , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[198]  Alejandro F. Frangi,et al.  Resolving degeneracy in diffusion MRI biophysical model parameter estimation using double diffusion encoding , 2018, Magnetic resonance in medicine.

[199]  Jonathan Nissanov,et al.  Assessment of axonal fiber tract architecture in excised rat spinal cord by localized NMR q‐space imaging: Simulations and experimental studies , 2004, Magnetic resonance in medicine.

[200]  Demian Wassermann,et al.  Machine learning based white matter models with permeability: An experimental study in cuprizone treated in-vivo mouse model of axonal demyelination , 2019, NeuroImage.

[201]  John G. Sled,et al.  Modelling and interpretation of magnetization transfer imaging in the brain , 2017, NeuroImage.

[202]  Richard Bowtell,et al.  Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI , 2018, NeuroImage.

[203]  W. Bondareff,et al.  Distribution of the extracellular space during postnatal maturation of rat cerebral cortex , 1968, The Anatomical record.

[204]  E. Fieremans,et al.  Novel White Matter Tract Integrity Metrics Sensitive to Alzheimer Disease Progression , 2013, American Journal of Neuroradiology.

[205]  Daniel C. Alexander,et al.  NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain , 2012, NeuroImage.

[206]  Jelle Veraart,et al.  In vivo quantification of demyelination and recovery using compartment-specific diffusion MRI metrics validated by electron microscopy , 2016, NeuroImage.

[207]  Matthew D. Budde,et al.  Examining brain microstructure using structure tensor analysis of histological sections , 2012, NeuroImage.

[208]  Marco Palombo,et al.  Can we detect the effect of spines and leaflets on the diffusion of brain intracellular metabolites? , 2017, NeuroImage.

[209]  Julien Cohen-Adad,et al.  Promise and pitfalls of g-ratio estimation with MRI , 2017, NeuroImage.

[210]  Jing-Rebecca Li,et al.  SpinDoctor: A MATLAB toolbox for diffusion MRI simulation , 2019, NeuroImage.

[211]  Alard Roebroeck,et al.  Robust and Fast Markov Chain Monte Carlo Sampling of Diffusion MRI Microstructure Models , 2018, Front. Neuroinform..

[212]  Jean-Philippe Thiran,et al.  Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations , 2019, NeuroImage.

[213]  Peter Savadjiev,et al.  Inter-site and inter-scanner diffusion MRI data harmonization , 2016, NeuroImage.

[214]  Carl-Fredrik Westin,et al.  Tensor‐valued diffusion MRI in under 3 minutes: an initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors , 2019, Magnetic resonance in medicine.

[215]  Ganesh Adluru,et al.  Model‐based reconstruction of undersampled diffusion tensor k‐space data , 2013, Magnetic resonance in medicine.

[216]  Martin Bech,et al.  Validation strategies for the interpretation of microstructure imaging using diffusion MRI , 2018, NeuroImage.

[217]  O. Reynaud,et al.  Time-Dependent Diffusion MRI in Cancer: Tissue Modeling and Applications , 2017, Front. Phys..

[218]  Bennett A. Landman,et al.  Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI , 2016, NeuroImage.

[219]  Rachid Deriche,et al.  AxTract: Toward microstructure informed tractography , 2017, Human brain mapping.

[220]  S. Kurpad,et al.  Rapid in vivo detection of rat spinal cord injury with double‐diffusion‐encoded magnetic resonance spectroscopy , 2017, Magnetic resonance in medicine.

[221]  Philippe Hantraye,et al.  New paradigm to assess brain cell morphology by diffusion-weighted MR spectroscopy in vivo , 2016, Proceedings of the National Academy of Sciences.

[222]  Marco Palombo,et al.  Revisiting double diffusion encoding MRS in the mouse brain at 11.7T: Which microstructural features are we sensitive to? , 2019, NeuroImage.

[223]  Jelle Veraart,et al.  On the scaling behavior of water diffusion in human brain white matter , 2019, NeuroImage.

[224]  P. Basser,et al.  New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter , 2004, Magnetic resonance in medicine.

[225]  J. Helpern,et al.  Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[226]  S. Saitoh,et al.  Recent development of in vivo cryotechnique to cryobiopsy for living animals. , 2007, Histology and histopathology.

[227]  Peter J. Basser,et al.  In vivo detection of microscopic anisotropy using quadruple pulsed-field gradient (qPFG) diffusion MRI on a clinical scanner , 2013, NeuroImage.

[228]  A. Leemans,et al.  Comprehensive framework for accurate diffusion MRI parameter estimation , 2013, Magnetic resonance in medicine.

[229]  Patrick R Hof,et al.  Neuropil distribution in the cerebral cortex differs between humans and chimpanzees , 2012, The Journal of comparative neurology.

[230]  T. Omae,et al.  Separating changes in the intra‐ and extracellular water apparent diffusion coefficient following focal cerebral ischemia in the rat brain , 2002, Magnetic resonance in medicine.

[231]  Joseph A. Helpern,et al.  Modeling white matter tract integrity in aging with diffusional kurtosis imaging , 2018, Neurobiology of Aging.

[232]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[233]  J. Finsterbusch,et al.  Double‐wave‐vector diffusion‐weighted imaging reveals microscopic diffusion anisotropy in the living human brain , 2013, Magnetic resonance in medicine.

[234]  J. Veraart,et al.  Along-axon diameter variation and axonal orientation dispersion revealed with 3D electron microscopy: implications for quantifying brain white matter microstructure with histology and diffusion MRI , 2019, Brain Structure and Function.

[235]  Daniel C. Alexander,et al.  Convergence and Parameter Choice for Monte-Carlo Simulations of Diffusion MRI , 2009, IEEE Transactions on Medical Imaging.

[236]  Markus Nilsson,et al.  Tensor-valued diffusion encoding for diffusional variance decomposition (DIVIDE): Technical feasibility in clinical MRI systems , 2016, PloS one.

[237]  Noam Shemesh,et al.  Insights into brain microstructure from in vivo DW-MRS , 2017, NeuroImage.

[238]  Jean-Francois Mangin,et al.  MEDUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres , 2019, NeuroImage.

[239]  G. L. Bretthorst,et al.  Sodium ion apparent diffusion coefficient in living rat brain , 2005, Magnetic resonance in medicine.

[240]  J C Gore,et al.  Diffusion‐weighted imaging in tissues: Theoretical models , 1995, NMR in biomedicine.

[241]  Dmitry S. Novikov,et al.  In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter , 2020, NeuroImage.

[242]  A. Mackay,et al.  In vivo measurement of T2 distributions and water contents in normal human brain , 1997, Magnetic resonance in medicine.

[243]  Bailey A. Box,et al.  Diffusion MRI microstructural models in the cervical spinal cord – Application, normative values, and correlations with histological analysis , 2019, NeuroImage.

[244]  Joseph A. Helpern,et al.  Modeling white matter microstructure with fiber ball imaging , 2018, NeuroImage.

[245]  J C Gore,et al.  Measurements of restricted diffusion using an oscillating gradient spin-echo sequence. , 2000, Journal of magnetic resonance.

[246]  J. Frank,et al.  Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke , 2010, Proceedings of the National Academy of Sciences.

[247]  R. Grossman,et al.  Quantification of normal-appearing white matter tract integrity in multiple sclerosis: a diffusion kurtosis imaging study , 2016, Journal of Neurology.

[248]  T. Georgiou,et al.  Microstructure Imaging of Crossing (MIX) White Matter Fibers from diffusion MRI , 2016, Scientific Reports.

[249]  Bailey A. Box,et al.  Multi‐compartmental diffusion characterization of the human cervical spinal cord in vivo using the spherical mean technique , 2018, NMR in biomedicine.

[250]  Brian Hansen,et al.  Diffusion time dependence of microstructural parameters in fixed spinal cord , 2017, NeuroImage.

[251]  Mitra,et al.  Multiple wave-vector extensions of the NMR pulsed-field-gradient spin-echo diffusion measurement. , 1995, Physical review. B, Condensed matter.

[252]  L. Schad,et al.  Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T , 2017, NMR in biomedicine.

[253]  A. Szafer,et al.  An analytical model of restricted diffusion in bovine optic nerve , 1997, Magnetic resonance in medicine.

[254]  J. Yeatman,et al.  Applying microstructural models to understand the role of white matter in cognitive development , 2019, Developmental Cognitive Neuroscience.

[255]  Daniel C. Alexander,et al.  SANDI: A compartment-based model for non-invasive apparent soma and neurite imaging by diffusion MRI , 2019, NeuroImage.

[256]  Jennifer A McNab,et al.  Double diffusion encoding MRI for the clinic , 2018, Magnetic resonance in medicine.

[257]  Jan Sijbers,et al.  Super‐resolution for multislice diffusion tensor imaging , 2013, Magnetic resonance in medicine.

[258]  Bryon A Mueller,et al.  Neurite orientation dispersion and density imaging quantifies corticospinal tract microstructural organization in children with unilateral cerebral palsy , 2019, Human brain mapping.

[259]  K. Trinkaus,et al.  Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice , 2014, NMR in biomedicine.

[260]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[261]  S. Jespersen,et al.  Effects of nongaussian diffusion on "isotropic diffusion" measurements: An ex-vivo microimaging and simulation study. , 2017, Journal of magnetic resonance.

[262]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[263]  Yogesh Rathi,et al.  High‐fidelity, accelerated whole‐brain submillimeter in vivo diffusion MRI using gSlider‐spherical ridgelets (gSlider‐SR) , 2020, Magnetic resonance in medicine.

[264]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[265]  Jürgen Finsterbusch,et al.  Detection of microscopic diffusion anisotropy in human cortical gray matter in vivo with double diffusion encoding , 2018, Magnetic resonance in medicine.

[266]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[267]  Kjell Arne Kvistad,et al.  Clinical MR spectroscopy of the brain. , 2019, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke.

[268]  C. Beaulieu,et al.  Comparison of generalized autocalibrating partially parallel acquisitions and modified sensitivity encoding for diffusion tensor imaging. , 2007, AJNR. American journal of neuroradiology.

[269]  Daniel C. Alexander,et al.  Neurite orientation dispersion and density imaging of the healthy cervical spinal cord in vivo , 2015, NeuroImage.

[270]  Timothy M. Shepherd,et al.  Diffusion MRI biomarkers of white matter microstructure vary nonmonotonically with increasing cerebral amyloid deposition , 2020, Neurobiology of Aging.

[271]  Bennett A. Landman,et al.  Histological validation of diffusion MRI fiber orientation distributions and dispersion , 2018, NeuroImage.

[272]  Julien Cohen-Adad,et al.  In vivo histology of the myelin g-ratio with magnetic resonance imaging , 2015, NeuroImage.

[273]  J. Neil,et al.  Cs + ADC in rat brain decreases markedly at death , 2008, Magnetic resonance in medicine.

[274]  Nicolas Kunz,et al.  Intra- and extra-axonal axial diffusivities in the white matter: Which one is faster? , 2018, NeuroImage.

[275]  Sterling C. Johnson,et al.  Cortical Microstructural Alterations in Mild Cognitive Impairment and Alzheimer's Disease Dementia. , 2019, Cerebral cortex.

[276]  Peter F. Neher,et al.  Tractography Reproducibility Challenge with Empirical Data (TraCED): The 2017 ISMRM Diffusion Study Group Challenge , 2018, bioRxiv.

[277]  Rolf Gruetter,et al.  Diffusion‐weighted MRS of acetate in the rat brain , 2017, NMR in biomedicine.

[278]  J. Sijbers,et al.  Diffusion kurtosis imaging probes cortical alterations and white matter pathology following cuprizone induced demyelination and spontaneous remyelination , 2016, NeuroImage.

[279]  Nando de Freitas,et al.  Bayesian Multi-Scale Optimistic Optimization , 2014, AISTATS.

[280]  Dan Wu,et al.  Oscillating gradient diffusion MRI reveals unique microstructural information in normal and hypoxia‐ischemia injured mouse brains , 2014, Magnetic resonance in medicine.

[281]  Derek K. Jones,et al.  Noninvasive quantification of axon radii using diffusion MRI , 2020, eLife.

[282]  Peng Cao,et al.  In vivo diffusion MRS investigation of non‐water molecules in biological tissues , 2017, NMR in biomedicine.

[283]  Karla L. Miller,et al.  A semi-automated approach to dense segmentation of 3D white matter electron microscopy , 2020, bioRxiv.

[284]  Julien Cohen-Adad,et al.  Improving diffusion MRI using simultaneous multi-slice echo planar imaging , 2012, NeuroImage.

[285]  Tim B. Dyrby,et al.  Orientationally invariant indices of axon diameter and density from diffusion MRI , 2010, NeuroImage.

[286]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[287]  V. Kiselev,et al.  Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation , 2016, NMR in biomedicine.

[288]  Jelle Veraart,et al.  One diffusion acquisition and different white matter models: How does microstructure change in human early development based on WMTI and NODDI? , 2015, NeuroImage.

[289]  Bibek Dhital,et al.  Intra-axonal diffusivity in brain white matter , 2017, NeuroImage.

[290]  C. Sønderby,et al.  Orientationally invariant metrics of apparent compartment eccentricity from double pulsed field gradient diffusion experiments , 2013, NMR in biomedicine.

[291]  Hua Li,et al.  Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy , 2014, NeuroImage.

[292]  Yong Wang,et al.  Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema , 2014, NeuroImage.

[293]  E. Achten,et al.  Simulation and experimental verification of the diffusion in an anisotropic fiber phantom. , 2008, Journal of magnetic resonance.

[294]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[295]  Rafael Neto Henriques,et al.  Validation and noise robustness assessment of microscopic anisotropy estimation with clinically feasible double diffusion encoding MRI , 2019, Magnetic resonance in medicine.

[296]  Julien Valette,et al.  Probing metabolite diffusion at ultra‐short time scales in the mouse brain using optimized oscillating gradients and “short”‐echo‐time diffusion‐weighted MRS , 2017, NMR in biomedicine.

[297]  Nando de Freitas,et al.  Active Policy Learning for Robot Planning and Exploration under Uncertainty , 2007, Robotics: Science and Systems.

[298]  Jörg Kärger,et al.  NMR self-diffusion studies in heterogeneous systems , 1985 .

[299]  Joseph A. Helpern,et al.  White matter characterization with diffusional kurtosis imaging , 2011, NeuroImage.

[300]  Jelle Veraart,et al.  Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline , 2018, NeuroImage.

[301]  D. Yablonskiy,et al.  On the nature of the NAA diffusion attenuated MR signal in the central nervous system , 2004, Magnetic resonance in medicine.

[302]  Markus Nilsson,et al.  Imaging brain tumour microstructure , 2018, NeuroImage.

[303]  Brian A. Wandell,et al.  Bound pool fractions complement diffusion measures to describe white matter micro and macrostructure , 2011, NeuroImage.

[304]  Julien Valette,et al.  Diffusion‐Weighted Magnetic Resonance Spectroscopy , 2015 .

[305]  Beathe Sitter,et al.  Klinisk MR-spektroskopi av hjernen , 2019, Tidsskrift for Den norske legeforening.

[306]  Janez Stepišnik,et al.  Analysis of NMR self-diffusion measurements by a density matrix calculation , 1981 .

[307]  Jelle Veraart,et al.  Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI , 2018, NeuroImage.

[308]  David A. Boas,et al.  Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain , 2020, NeuroImage.