Ab initio electron-two-phonon scattering in GaAs from next-to-leading order perturbation theory

[1]  Jinsoo Park,et al.  Perturbo: A software package for ab initio electron-phonon interactions, charge transport and ultrafast dynamics , 2020, Comput. Phys. Commun..

[2]  M. Bernardi,et al.  Predicting charge transport in the presence of polarons: The beyond-quasiparticle regime in SrTiO3 , 2019, Physical Review Research.

[3]  Nicola Marzari,et al.  Mobility of two-dimensional materials from first principles in an accurate and automated framework , 2018, Physical Review Materials.

[4]  M. Bernardi,et al.  Electron-Phonon Scattering in the Presence of Soft Modes and Electron Mobility in SrTiO_{3} Perovskite from First Principles. , 2018, Physical review letters.

[5]  Wu Li,et al.  First-principles study of electron and hole mobilities of Si and GaAs , 2018 .

[6]  T. Kinoshita,et al.  Revised and improved value of the QED tenth-order electron anomalous magnetic moment , 2017, 1712.06060.

[7]  Luis A. Agapito,et al.  Charge transport in organic molecular semiconductors from first principles: The bandlike hole mobility in a naphthalene crystal , 2017, 1712.00490.

[8]  Lucia Reining,et al.  Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: Cumulants applied to full first principles theory and Fr\"ohlich polaron , 2017, 1710.07594.

[9]  David J. Singh,et al.  First-principles mode-by-mode analysis for electron-phonon scattering channels and mean free path spectra in GaAs , 2016, 1606.07074.

[10]  M. Bernardi,et al.  Ab initio Electron Mobility and Polar Phonon Scattering in GaAs , 2016, 1608.03514.

[11]  M. Bernardi First-principles dynamics of electrons and phonons* , 2016, 1607.00080.

[12]  S. Louie,et al.  Ab Initio Electronic Relaxation Times and Transport in Noble Metals , 2016 .

[13]  Feliciano Giustino,et al.  Fröhlich Electron-Phonon Vertex from First Principles. , 2015, Physical review letters.

[14]  M. Calandra,et al.  Wannier interpolation of the electron-phonon matrix elements in polar semiconductors: Polar-optical coupling in GaAs , 2015, 1508.06172.

[15]  Wu Li Electrical transport limited by electron-phonon coupling from Boltzmann transport equation: An ab initio study of Si, Al, and MoS 2 , 2015 .

[16]  J. Rehr,et al.  Cumulant expansion for phonon contributions to the electron spectral function , 2014, 1407.6408.

[17]  S. Louie,et al.  Phonon-assisted optical absorption in silicon from first principles. , 2012, Physical review letters.

[18]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Pavel Ginzburg,et al.  Observation of two-photon emission from semiconductors , 2008 .

[20]  S. Louie,et al.  Electron-phonon interaction using Wannier functions , 2007 .

[21]  Arash A. Mostofi,et al.  A ug 2 00 7 wannier 90 : A Tool for Obtaining Maximally-Localised Wannier Functions , 2007 .

[22]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[23]  L. Dixon,et al.  Two-loop correction to Bhabha scattering , 2000, hep-ph/0010075.

[24]  M. Mora-Ramos,et al.  Polaron properties of III-V nitride compounds: second-order effects , 1999 .

[25]  G. Mahan,et al.  Nonlinear electron-phonon heat exchange , 1998 .

[26]  Nakayama,et al.  Ab initio calculations of two-photon absorption spectra in semiconductors. , 1995, Physical review. B, Condensed matter.

[27]  Gunnarsson,et al.  Corrections to Migdal's theorem for spectral functions: A cumulant treatment of the time-dependent Green's function. , 1994, Physical review. B, Condensed matter.

[28]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[29]  Wang,et al.  Low-temperature resistivity from electron-dual-phonon processes for alkali metals. , 1989, Physical review. B, Condensed matter.

[30]  M. Smondyrev Diagrams in the polaron model , 1986 .

[31]  G. I. Thorbergsson,et al.  Mobility of an acoustic polaron at very low temperatures , 1986 .

[32]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[33]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[34]  G. Mahan Many-particle physics , 1981 .

[35]  C. M. Wolfe,et al.  High-temperature carrier transport in n-type epitaxial GaAs , 1980 .

[36]  P. Vogl Microscopic theory of electron-phonon interaction in insulators or semiconductors , 1976 .

[37]  P. Blood Electrical Properties of n -Type Epitaxial GaAs at High Temperatures , 1972 .

[38]  D. Rode,et al.  Electron Transport in GaAs , 1971 .

[39]  D. Rode Electron Mobility in Direct-Gap Polar Semiconductors , 1970 .

[40]  G. E. Stillman,et al.  Electron Mobility in High‐Purity GaAs , 1970 .

[41]  H.G.B. Hicks,et al.  High purity GaAs by liquid phase epitaxy , 1969 .

[42]  F. Blatt,et al.  On the role of two-phonon processes in the energy relaxation of a heated-electron distribution , 1967 .

[43]  K. Thornber,et al.  RESONANT ELECTRON‐PHONON SCATTERING IN POLAR SEMICONDUCTORS , 1967 .

[44]  M. Reiner Second-Order Effects , 1965 .

[45]  T. Holstein Theory of Ultrasonic Absorption in Metals: the Collision-Drag Effect , 1959 .

[46]  H. Fröhlich Electrons in lattice fields , 1954 .