Influence of voxel size on forest canopy height estimates using full-waveform airborne LiDAR data

[1]  L. Iverson,et al.  Predicting Ailanthus altissima presence across a managed forest landscape in southeast Ohio , 2019, Forest Ecosystems.

[2]  Jinfu Liu,et al.  Estimating forest aboveground biomass using small-footprint full-waveform airborne LiDAR data , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[3]  Xiaohuan Xi,et al.  Combining hyperspectral imagery and LiDAR pseudo-waveform for predicting crop LAI, canopy height and above-ground biomass , 2019, Ecological Indicators.

[4]  Jonathan P. Dash,et al.  Comparison of models describing forest inventory attributes using standard and voxel-based lidar predictors across a range of pulse densities , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[5]  Wuming Zhang,et al.  A Novel Approach for the Detection of Standing Tree Stems from Plot-Level Terrestrial Laser Scanning Data , 2019, Remote. Sens..

[6]  Carlos Alberto Silva,et al.  Optimizing the Remote Detection of Tropical Rainforest Structure with Airborne Lidar: Leaf Area Profile Sensitivity to Pulse Density and Spatial Sampling , 2019, Remote. Sens..

[7]  N. Coops,et al.  Characterizing understory vegetation in Mediterranean forests using full-waveform airborne laser scanning data , 2018, Remote Sensing of Environment.

[8]  Krzysztof Sterenczak,et al.  Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[9]  N. Coops,et al.  Mapping tree canopies in urban environments using airborne laser scanning (ALS): a Vancouver case study , 2018, Forest Ecosystems.

[10]  Luis Ángel Ruiz Fernández,et al.  Influence of Lidar Full-Waveform Density and Voxel Size on Forest Stand Estimates , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Victoria Meyer,et al.  Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[12]  Heiko Balzter,et al.  Modelling forest canopy height by integrating airborne LiDAR samples with satellite Radar and multispectral imagery , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[13]  Ross A. Hill,et al.  Influence of micro-topography and crown characteristics on tree height estimations in tropical forests based on LiDAR canopy height models , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[14]  Michele Dalponte,et al.  Predicting stem diameters and aboveground biomass of individual trees using remote sensing data , 2018 .

[15]  Xiaohuan Xi,et al.  Above-ground biomass estimation using airborne discrete-return and full-waveform LiDAR data in a coniferous forest , 2017 .

[16]  Markus Hollaus,et al.  Total canopy transmittance estimated from small-footprint, full-waveform airborne LiDAR , 2017 .

[17]  Xiaohuan Xi,et al.  Retrieving aboveground biomass of wetland Phragmites australis (common reed) using a combination of airborne discrete-return LiDAR and hyperspectral data , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[18]  Terje Gobakken,et al.  Biomass and InSAR height relationship in a dense tropical forest , 2017 .

[19]  Woo-Kyun Lee,et al.  Estimation of Voxel-Based Above-Ground Biomass Using Airborne LiDAR Data in an Intact Tropical Rain Forest, Brunei , 2016 .

[20]  K. Richter,et al.  VOXEL BASED REPRESENTATION OF FULL-WAVEFORM AIRBORNE LASER SCANNER DATA FOR FORESTRY APPLICATIONS , 2016 .

[21]  Mingquan Wu,et al.  Generating pseudo large footprint waveforms from small footprint full-waveform airborne LiDAR data for the layered retrieval of LAI in orchards. , 2016, Optics express.

[22]  Shelley A. Hinsley,et al.  Comparison of small-footprint discrete return and full waveform airborne lidar data for estimating multiple forest variables , 2016 .

[23]  Ruben Van De Kerchove,et al.  Monitoring grass nutrients and biomass as indicators of rangeland quality and quantity using random forest modelling and WorldView-2 data , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[24]  Min Zheng,et al.  A Denoising Method for LiDAR Full-Waveform Data , 2015 .

[25]  Virpi Junttila,et al.  Moving Voxel Method for Estimating Canopy Base Height from Airborne Laser Scanner Data , 2015, Remote. Sens..

[26]  Zheng Niu,et al.  Height Extraction of Maize Using Airborne Full-Waveform LIDAR Data and a Deconvolution Algorithm , 2015, IEEE Geoscience and Remote Sensing Letters.

[27]  Dar A. Roberts,et al.  Mapping urban forest leaf area index with airborne lidar using penetration metrics and allometry , 2015 .

[28]  Jordi Cristóbal,et al.  Estimating above-ground biomass on mountain meadows and pastures through remote sensing , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[29]  W. Cohen,et al.  Estimating forest aboveground biomass by low density lidar data in mixed broad-leaved forests in the Italian Pre-Alps , 2015, Forest Ecosystems.

[30]  Michael A. Wulder,et al.  Characterizing stand-level forest canopy cover and height using Landsat time series, samples of airborne LiDAR, and the Random Forest algorithm , 2015 .

[31]  Yuhong Zhou,et al.  Fusion of high spatial resolution WorldView-2 imagery and LiDAR pseudo-waveform for object-based image analysis , 2015 .

[32]  Zheng Niu,et al.  Characterizing Radiometric Attributes of Point Cloud Using a Normalized Reflective Factor Derived From Small Footprint LiDAR Waveform , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[33]  Pol Coppin,et al.  Effects of voxel size and sampling setup on the estimation of forest canopy gap fraction from terrestrial laser scanning data , 2014 .

[34]  Hans-Gerd Maas,et al.  CORRECTING ATTENUATION EFFECTS CAUSED BY INTERACTIONS IN THE FOREST CANOPY IN FULL-WAVEFORM AIRBORNE LASER SCANNER DATA , 2014 .

[35]  Nicholas C. Coops,et al.  Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests , 2014, Remote. Sens..

[36]  N. Coops,et al.  Estimation of forest structure and canopy fuel parameters from small-footprint full-waveform LiDAR data , 2014 .

[37]  Nicholas C. Coops,et al.  Deriving pseudo-vertical waveforms from small-footprint full-waveform LiDAR data , 2014 .

[38]  Nicholas C. Coops,et al.  Integrating airborne LiDAR and space-borne radar via multivariate kriging to estimate above-ground biomass , 2013 .

[39]  Sylvie Durrieu,et al.  Stem Volume and Above-Ground Biomass Estimation of Individual Pine Trees From LiDAR Data: Contribution of Full-Waveform Signals , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[40]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[41]  Stefan Dech,et al.  Derivation of biomass information for semi-arid areas using remote-sensing data , 2012 .

[42]  M. Cho,et al.  Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment , 2012 .

[43]  Håkan Olsson,et al.  Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data , 2012 .

[44]  S. Popescu,et al.  Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level , 2011 .

[45]  A. Nolin,et al.  Forest structure and aboveground biomass in the southwestern United States from MODIS and MISR , 2011 .

[46]  M. Lefsky,et al.  Impact of footprint diameter and off-nadir pointing on the precision of canopy height estimates from spaceborne lidar , 2011 .

[47]  Alan H. Strahler,et al.  Retrieval of canopy height using moderate-resolution imaging spectroradiometer (MODIS) data , 2011 .

[48]  Philip A. Townsend,et al.  A pseudo-waveform technique to assess forest structure using discrete lidar data , 2011 .

[49]  K. O. Niemann,et al.  Simulated impact of sample plot size and co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass , 2011 .

[50]  Saso Dzeroski,et al.  Estimating vegetation height and canopy cover from remotely sensed data with machine learning , 2010, Ecol. Informatics.

[51]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[52]  Michael A. Wulder,et al.  Estimating forest canopy height and terrain relief from GLAS waveform metrics , 2010 .

[53]  Florian Siegert,et al.  Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands , 2009, Proceedings of the National Academy of Sciences.

[54]  S. Popescu,et al.  A voxel-based lidar method for estimating crown base height for deciduous and pine trees , 2008 .

[55]  H. Balzter,et al.  Forest canopy height and carbon estimation at Monks Wood National Nature Reserve, UK, using dual-wavelength SAR interferometry , 2007 .

[56]  David J. Harding,et al.  Correction to “Estimates of forest canopy height and aboveground biomass using ICESat” , 2006 .

[57]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[58]  Guoqing Sun,et al.  Landcover attributes from ICESat GLAS data in Central Siberia , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[59]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[60]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[61]  Yi Lin,et al.  Comparative Performances of Airborne LiDAR Height and Intensity Data for Leaf Area Index Estimation , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[62]  Cheng Wang,et al.  Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux , 2018 .

[63]  Guang Zheng,et al.  Retrieving Directional Gap Fraction, Extinction Coefficient, and Effective Leaf Area Index by Incorporating Scan Angle Information From Discrete Aerial Lidar Data , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[64]  Kevin J. Gaston,et al.  Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar , 2017 .

[65]  David M. Burdick,et al.  Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters , 2015 .

[66]  Michael A. Lefsky,et al.  Revised method for forest canopy height estimation from Geoscience Laser Altimeter System waveforms , 2007 .