Curved Glide-Reflection Symmetry Detection

We generalize the concept of bilateral reflection symmetry to curved glide-reflection symmetry in 2D euclidean space, such that classic reflection symmetry becomes one of its six special cases. We propose a local feature-based approach for curved glide-reflection symmetry detection from real, unsegmented 2D images. Furthermore, we apply curved glide-reflection axis detection for curved reflection surface detection in 3D images. Our method discovers, groups, and connects statistically dominant local glide-reflection axes in an Axis-Parameter-Space (APS) without preassumptions on the types of reflection symmetries. Quantitative evaluations and comparisons against state-of-the-art algorithms on a diverse 64-test-image set and 1,125 Swedish leaf-data images show a promising average detection rate of the proposed algorithm at 80 and 40 percent, respectively, and superior performance over existing reflection symmetry detection algorithms. Potential applications in computer vision, particularly biomedical imaging, include saliency detection from unsegmented images and quantification of deviations from normality. We make our 64-test-image set publicly available.

[1]  Yanxi Liu,et al.  A computational model for periodic pattern perception based on frieze and wallpaper groups , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  M. Brady,et al.  Smoothed Local Symmetries and Their Implementation , 1984 .

[3]  Bayya Yegnanarayana,et al.  Finding axes of symmetry from potential fields , 2004, IEEE Transactions on Image Processing.

[4]  Antti Ylä-Jääski,et al.  Grouping Symmetrical Structures for Object Segmentation and Description , 1996, Comput. Vis. Image Underst..

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  James Hays,et al.  A Quantitative Evaluation of Symmetry Detection Algorithms , 2007 .

[7]  Giovanni Marola,et al.  On the Detection of the Axes of Symmetry of Symmetric and Almost Symmetric Planar Images , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  S Minoshima,et al.  An automated method for rotational correction and centering of three-dimensional functional brain images. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[9]  Iwao Kanno,et al.  Automatic detection of the mid-sagittal plane in 3-D brain images , 1997, IEEE Transactions on Medical Imaging.

[10]  Yanxi Liu,et al.  A Group Theoretic Formalization of Surface Contact , 1994, Int. J. Robotics Res..

[11]  Gert Kootstra,et al.  Paying Attention to Symmetry , 2008, BMVC.

[12]  Luc Van Gool,et al.  Mirror and point symmetry under perspective skewing , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Nahum Kiryati,et al.  On Symmetry, Perspectivity, and Level-Set-Based Segmentation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Dinggang Shen,et al.  Robust detection of skewed symmetries , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  Calvin C. Moore,et al.  COMPACTIFICATIONS OF SYMMETRIC SPACES. , 1964 .

[17]  Hagit Hel-Or,et al.  Symmetry as a Continuous Feature , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  François X. Sillion,et al.  Accurate detection of symmetries in 3D shapes , 2006, TOGS.

[19]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor , 2002, ECCV.

[20]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[21]  Yuntao Qian,et al.  Improved recognition of figures containing fluorescence microscope images in online journal articles using graphical models , 2008, Bioinform..

[22]  Harry Shum,et al.  Digital papercutting , 2005, SIGGRAPH '05.

[23]  Lizhen Ji,et al.  Compactifications of Symmetric Spaces , 1998 .

[24]  Kaleem Siddiqi,et al.  Medial Representations: Mathematics, Algorithms and Applications , 2008 .

[25]  Andrew Zisserman,et al.  Shape from symmetry: detecting and exploiting symmetry in affine images , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[26]  Weixin Xie,et al.  Rotation Registration of Medical Images Based on Image Symmetry , 2005, ICIC.

[27]  Richard A. Volz,et al.  Optimal algorithms for symmetry detection in two and three dimensions , 1985, The Visual Computer.

[28]  Francois Labonte,et al.  A perceptually plausible model for global symmetry detection , 1993, 1993 (4th) International Conference on Computer Vision.

[29]  Bernard Chazelle,et al.  A Reflective Symmetry Descriptor for 3D Models , 2003, Algorithmica.

[30]  Alexander V. Tuzikov,et al.  Convex Set Symmetry Measurement via Minkowski Addition , 2004, Journal of Mathematical Imaging and Vision.

[31]  Leonidas J. Guibas,et al.  Discovering structural regularity in 3D geometry , 2008, ACM Trans. Graph..

[32]  Nahum Kiryati,et al.  Detecting Symmetry in Grey Level Images: The Global Optimization Approach , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[33]  Gareth Loy,et al.  Detecting Bilateral Symmetry in Perspective , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[34]  Werner von Seelen,et al.  Intensity and Edge-Based Symmetry Detection Applied to Car-Following , 1992, ECCV.

[35]  M. Kasper graphics , 1991, Illustrating Mathematics.

[36]  Xiaoou Tang,et al.  Efficient local reflectional symmetries detection , 2005, IEEE International Conference on Image Processing 2005.

[37]  Xiao Liu,et al.  Straightening Caenorhabditis elegans images , 2007, Bioinform..

[38]  Cobb,et al.  Outlines for the study of scoliosis , 1948 .

[39]  Yanxi Liu,et al.  Curved Reflection Symmetry Detection with Self-validation , 2010, ACCV.

[40]  Mikkel B. Stegmann,et al.  Mid-sagittal plane and mid-sagittal surface optimization in brain MRI using a local symmetry measure , 2005, SPIE Medical Imaging.

[41]  Yehezkel Yeshurun,et al.  Context-free attentional operators: The generalized symmetry transform , 1995, International Journal of Computer Vision.

[42]  Sébastien Ourselin,et al.  Computation of the mid-sagittal plane in 3-D brain images , 2002, IEEE Transactions on Medical Imaging.

[43]  Andreas Kuehnle,et al.  Symmetry-based recognition of vehicle rears , 1991, Pattern Recognit. Lett..

[44]  Oskar Söderkvist,et al.  Computer Vision Classification of Leaves from Swedish Trees , 2001 .

[45]  Sven J. Dickinson,et al.  Multiscale Symmetric Part Detection and Grouping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[46]  Philippe Saint-Marc,et al.  B-spline Contour Representation and Symmetry Detection , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Joseph L. Mundy,et al.  Recognition of plane projective symmetry , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[48]  Luc Van Gool,et al.  Computational Symmetry in Computer Vision and Computer Graphics , 2010, Found. Trends Comput. Graph. Vis..

[49]  Yanxi Liu,et al.  Skewed Rotation Symmetry Group Detection , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Jan-Olof Eklundh,et al.  Detecting Symmetry and Symmetric Constellations of Features , 2006, ECCV.

[51]  Changming Sun,et al.  3D Symmetry Detection Using The Extended Gaussian Image , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Li Yi,et al.  Bilateral symmetry of object silhouettes under perspective projection , 2008, 2008 19th International Conference on Pattern Recognition.

[53]  Jean Ponce,et al.  On characterizing ribbons and finding skewed symmetries , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[54]  Larry S. Davis,et al.  Detecting rotational symmetries , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[55]  Alfred M. Bruckstein,et al.  Skew symmetry detection via invariant signatures , 1998, Pattern Recognit..

[56]  Yanxi Liu Symmetry groups in robotic assembly planning , 1991 .

[57]  Stefan Carlsson,et al.  Symmetry in Perspective , 1998, ECCV.

[58]  Yanxi Liu,et al.  Robust midsagittal plane extraction from normal and pathological 3-D neuroradiology images , 2001, IEEE Transactions on Medical Imaging.

[59]  Changming Sun,et al.  Fast Reflectional Symmetry Detection Using Orientation Histograms , 1999, Real Time Imaging.

[60]  A. Zisserman,et al.  A three dimensional mid sagittal plane for brain asymmetry measurement , 1996, Schizophrenia Research.

[61]  Gunther Heidemann,et al.  Focus-of-attention from local color symmetries , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Yoshinobu Sato,et al.  Detecting Planar and Curved Symmetries of 3D Shapes from a Range Image , 1996, Comput. Vis. Image Underst..

[63]  Shmuel Raz,et al.  A new measure of symmetry and its application to classification of bifurcating structures , 2007, Pattern Recognit..

[64]  Yanxi Liu,et al.  Local facial asymmetry for expression classification , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[65]  Kok Cheong Wong,et al.  Detection and localisation of reflectional and rotational symmetry under weak perspective projection , 1999, Pattern Recognit..

[66]  Giovanni Marola A technique for finding the symmetry axes of implicit polynomial curves under perspective projection , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Long Quan,et al.  Image deblurring with blurred/noisy image pairs , 2007, SIGGRAPH 2007.

[68]  Bin Dai,et al.  A Vehicle Detection Method via Symmetry in Multi-Scale Windows , 2007, 2007 2nd IEEE Conference on Industrial Electronics and Applications.

[69]  P. Locher,et al.  SYMMETRY CATCHES THE EYE , 1987 .

[70]  Takeo Kanade,et al.  Recovery of the Three-Dimensional Shape of an Object from a Single View , 1981, Artif. Intell..

[71]  Benoit M. Macq,et al.  Fast and automatic tumoral area localisation using symmetry , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..