Wideband MIMO Antenna Array Covering 3.3–7.1 GHz for 5G Metal-Rimmed Smartphone Applications

A wideband 8-antenna Multiple-Input Multiple-Output (MIMO) array covering 3.3–7.1 GHz for Fifth-Generation (5G) sub-7 GHz and New Radio Unlicensed (NR-U) applications in metal-rimmed smartphones is presented in this paper. In this design, the open slot loaded metal rim is directly fed by microstrip line. Hybrid Inverted-F Antenna (IFA) and slot modes are generated. Utilizing impedance matching and reactance loading, the two modes are moved and combined, so as to achieve size reduction and wideband coverage. The size of the ground slot (clearance) is only 12.4 mm $\times1.5$ mm ( $0.136\,\,\lambda \times 0.016 \,\,\lambda $ at 3.3 GHz). The proposed MIMO antenna array is fabricated and measured. Results show that in the desired wide frequency band, the proposed design can achieve desirable antenna performances, including isolation >11 dB, total efficiency >47%, and calculated Envelope Correlation Coefficient (ECC) <0.09. Besides, antenna gain, radiation pattern and calculated ergodic channel capacity are demonstrated as well. The proposed metal-rim-integrated MIMO antenna array features small size, simple structure and wide bandwidth. It can be a good application-oriented design in next-generation 5G mobile communication.

[1]  Chow-Yen-Desmond Sim,et al.  An 8-Element Dual-Band MIMO Antenna with Decoupling Stub for 5G Smartphone Applications , 2019, IEEE Antennas and Wireless Propagation Letters.

[2]  Xin Lv,et al.  Tightly Arranged Four-Element MIMO Antennas for 5G Mobile Terminals , 2019, IEEE Transactions on Antennas and Propagation.

[3]  Zhengwei Du,et al.  Slot antenna array for fifth generation metal frame mobile phone applications , 2019, International Journal of RF and Microwave Computer-Aided Engineering.

[4]  Wei Wang,et al.  Ultra-Wideband 8-Port MIMO Antenna Array for 5G Metal-Frame Smartphones , 2019, IEEE Access.

[5]  Kunpeng Wei,et al.  Polarization-Orthogonal Co-frequency Dual Antenna Pair Suitable for 5G MIMO Smartphone With Metallic Bezels , 2019, IEEE Transactions on Antennas and Propagation.

[6]  Zhouyou Ren,et al.  Wideband MIMO Antenna Systems Based on Coupled-Loop Antenna for 5G N77/N78/N79 Applications in Mobile Terminals , 2019, IEEE Access.

[7]  Yingsong Li,et al.  Dual-Band Eight-Antenna Array Design for MIMO Applications in 5G Mobile Terminals , 2019, IEEE Access.

[8]  Changle Li,et al.  Dual-Band Inverted F-Shaped Antenna Array for Sub-6 GHz Smartphones , 2019, 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring).

[9]  Bin Xu,et al.  A dual‐band eight‐antenna multi‐input multi‐output array for 5G metal‐framed smartphones , 2019, International Journal of RF and Microwave Computer-Aided Engineering.

[10]  Chow-Yen-Desmond Sim,et al.  Single Ring Slot-Based Antennas for Metal-Rimmed 4G/5G Smartphones , 2019, IEEE Transactions on Antennas and Propagation.

[11]  Wei-Yu Li,et al.  Conjoined ultra‐wideband (2,300‐6,000 MHz) dual antennas for LTE HB/WiFi/5G multi‐input multi‐output operation in the fifth‐generation tablet device , 2019 .

[12]  Guangli Yang,et al.  Dual‐mode and triple‐band 10‐antenna handset array and its multiple‐input multiple‐output performance evaluation in 5G , 2018, International Journal of RF and Microwave Computer-Aided Engineering.

[13]  Chow-Yen-Desmond Sim,et al.  Metal‐frame‐integrated eight‐element multiple‐input multiple‐output antenna array in the long term evolution bands 41/42/43 for fifth generation smartphones , 2018, International Journal of RF and Microwave Computer-Aided Engineering.

[14]  Kin-Lu Wong,et al.  High‐isolation conjoined loop multi‐input multi‐output antennas for the fifth‐generation tablet device , 2019 .

[15]  Yong-Chang Jiao,et al.  Novel compact CRLH‐TL‐based tri‐band MIMO antenna element for the 5G mobile handsets , 2018 .

[16]  Wei-Yu Li,et al.  Decoupled compact ultra‐wideband MIMO antennas covering 3300∼6000 MHz for the fifth‐generation mobile and 5GHz‐WLAN operations in the future smartphone , 2018 .

[17]  Juan Chen,et al.  3.6-GHz eight-antenna MIMO array for mobile terminal applications , 2018, AEU - International Journal of Electronics and Communications.

[18]  Kin‐Lu Wong,et al.  Compact Quad-Offset Loop/IFA Hybrid Antenna Array for Forming Eight 3.5/5.8 GHz MIMO Antennas in the Future Smartphone , 2018, 2018 International Symposium on Antennas and Propagation (ISAP).

[19]  Jingli Guo,et al.  Side-Edge Frame Printed Eight-Port Dual-Band Antenna Array for 5G Smartphone Applications , 2018, IEEE Transactions on Antennas and Propagation.

[20]  Kin-Lu Wong,et al.  Integrated Inverted-F and Open-Slot Antennas in the Metal-Framed Smartphone for $2\times2$ LTE LB and $4\times4$ LTE M/HB MIMO Operations , 2018, IEEE Transactions on Antennas and Propagation.

[21]  Feng Liu,et al.  A High-Pass Antenna Interference Cancellation Chip for Mutual Coupling Reduction of Antennas in Contiguous Frequency Bands , 2018, IEEE Access.

[22]  Yue Li,et al.  Tightly arranged orthogonal mode antenna for 5G MIMO mobile terminal , 2018 .

[23]  Chow-Yen-Desmond Sim,et al.  Design of 8 × 8 dual‐band MIMO antenna array for 5G smartphone applications , 2018, International Journal of RF and Microwave Computer-Aided Engineering.

[24]  Chow-Yen-Desmond Sim,et al.  Multiband 10-Antenna Array for Sub-6 GHz MIMO Applications in 5-G Smartphones , 2018, IEEE Access.

[25]  Jun Wang,et al.  Compact Quadruple Band MIMO Antenna for 5G Mobile Applications , 2018 .

[26]  Kin-Lu Wong,et al.  Dual‐feed U‐slot antenna having low envelope correlation coefficients for the LTE MIMO operation in the metal‐framed smartphone , 2018 .

[27]  Jinhong Guo,et al.  Tri-Polarized 12-Antenna MIMO Array for Future 5G Smartphone Applications , 2018, IEEE Access.

[28]  Chow-Yen-Desmond Sim,et al.  12-Port 5G Massive MIMO Antenna Array in Sub-6GHz Mobile Handset for LTE Bands 42/43/46 Applications , 2018, IEEE Access.

[29]  Kin-Lu Wong,et al.  Dual‐band dual inverted‐F/loop antennas as a compact decoupled building block for forming eight 3.5/5.8‐GHz MIMO antennas in the future smartphone , 2017 .

[30]  Ming-Yang Li,et al.  Eight-port orthogonally dual-polarised MIMO antennas using loop structures for 5G smartphone , 2017 .

[31]  Steven Gao,et al.  Modal analysis and excitation of wideband slot antennas , 2017 .

[32]  Luyu Zhao,et al.  A Dual-Band Inverted-F MIMO Antenna With Enhanced Isolation for WLAN Applications , 2017, IEEE Antennas and Wireless Propagation Letters.

[33]  Ying Liu,et al.  Isolation Enhancement in Patch Antenna Array With Fractal UC-EBG Structure and Cross Slot , 2017, IEEE Antennas and Wireless Propagation Letters.

[34]  Hai Zhou,et al.  A Novel Reconfigurable Metal Rim Integrated Open Slot Antenna for Octa-Band Smartphone Applications , 2017, IEEE Transactions on Antennas and Propagation.

[35]  Kin-Lu Wong,et al.  Two Asymmetrically Mirrored Gap-Coupled Loop Antennas as a Compact Building Block for Eight-Antenna MIMO Array in the Future Smartphone , 2017, IEEE Transactions on Antennas and Propagation.

[36]  Kin-Lu Wong,et al.  Compact eight-antenna array in the smartphone for the 3.5-GHz LTE 8 × 8 MIMO operation , 2016, 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP).

[37]  Hai Zhou,et al.  A Compact and Low-Profile Loop Antenna With Six Resonant Modes for LTE Smartphone , 2016, IEEE Transactions on Antennas and Propagation.

[38]  Ming-Yang Li,et al.  Eight-Port Orthogonally Dual-Polarized Antenna Array for 5G Smartphone Applications , 2016, IEEE Transactions on Antennas and Propagation.

[39]  Chow-Yen-Desmond Sim,et al.  4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications , 2016, IEEE Access.

[40]  Kin-Lu Wong,et al.  8‐antenna and 16‐antenna arrays using the quad‐antenna linear array as a building block for the 3.5‐GHz LTE MIMO operation in the smartphone , 2016 .

[41]  Hybrid dual‐antenna for the 3.6‐GHz LTE operation in the tablet computer , 2015 .

[42]  Kin-Lu Wong,et al.  3.6‐GHz 10‐antenna array for mimo operation in the smartphone , 2015 .

[43]  Janne Ilvonen,et al.  Eight‐element antenna array for diversity and mimo mobile terminal in LTE 3500 MHz band , 2014 .

[44]  M. Kanagasabai,et al.  Implementation of Slotted Meander-Line Resonators for Isolation Enhancement in Microstrip Patch Antenna Arrays , 2013, IEEE Antennas and Wireless Propagation Letters.

[45]  D. Schreurs,et al.  Mutual Coupling Reduction Between Planar Antennas by Using a Simple Microstrip U-Section , 2012, IEEE Antennas and Wireless Propagation Letters.

[46]  Y. Hao,et al.  Internal Hexa-Band Folded Monopole/Dipole/Loop Antenna With Four Resonances for Mobile Device , 2012, IEEE Transactions on Antennas and Propagation.

[47]  T. Cui,et al.  Reduction of Mutual Coupling Between Closely Packed Patch Antennas Using Waveguided Metamaterials , 2012, IEEE Antennas and Wireless Propagation Letters.

[48]  J. Ouyang,et al.  Reducing Mutual Coupling of Closely Spaced Microstrip MIMO Antennas for WLAN Application , 2011, IEEE Antennas and Wireless Propagation Letters.

[49]  Omar M Ramahi,et al.  Mutual Coupling Reduction Between Microstrip Patch Antennas Using Slotted-Complementary Split-Ring Resonators , 2010, IEEE Antennas and Wireless Propagation Letters.

[50]  H. S. Farahani,et al.  Mutual Coupling Reduction in Patch Antenna Arrays Using a UC-EBG Superstrate , 2010, IEEE Antennas and Wireless Propagation Letters.

[51]  M. Zheng,et al.  Triple-band wireless local area network monopole antenna , 2008 .

[52]  Ang Yu,et al.  A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure , 2003 .