mm-Wave Broadband Downconverters

This chapter is devoted to receiver (RX) front-ends for mm-Wave applications. As discussed in Chap. 1 the RX sensitivity sets a straightforward limit to the achievable link distance. Moreover, to achieve wideband operation without jeopardizing the insertion loss of the required matching networks, the design techniques discussed in Chap. 3 are largely employed. The design challenges and trade-offs relevant to mm-Wave circuits implemented in deep-scaled CMOS are addressed.

[1]  Behzad Razavi,et al.  RF Microelectronics (2nd Edition) (Prentice Hall Communications Engineering and Emerging Technologies Series) , 2011 .

[2]  Kenichi Okada,et al.  Full Four-Channel 6.3-Gb/s 60-GHz CMOS Transceiver With Low-Power Analog and Digital Baseband Circuitry , 2013, IEEE Journal of Solid-State Circuits.

[3]  Matteo Bassi,et al.  A 15 GHz-bandwidth 20dBm PSAT power amplifier with 22% PAE in 65nm CMOS , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[4]  Hooman Darabi,et al.  21.8 A pulling mitigation technique for direct-conversion transmitters , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[5]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[6]  Davide Guermandi,et al.  A Wideband Receiver for Multi-Gbit/s Communications in 65 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[7]  Davide Guermandi,et al.  A 79GHz variable gain low-noise amplifier and power amplifier in 28nm CMOS operating up to 125°C , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[8]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[9]  H.T. Friis,et al.  Noise Figures of Radio Receivers , 1944, Proceedings of the IRE.

[10]  Alyosha C. Molnar,et al.  A Passive Mixer-First Receiver With Digitally Controlled and Widely Tunable RF Interface , 2010, IEEE Journal of Solid-State Circuits.

[11]  Patrick Reynaert,et al.  A 40-nm CMOS E-Band 4-Way Power Amplifier With Neutralized Bootstrapped Cascode Amplifier and Optimum Passive Circuits , 2015, IEEE Transactions on Microwave Theory and Techniques.

[12]  Marco Vigilante,et al.  A 25–102GHz 2.81–5.64mW tunable divide-by-4 in 28nm CMOS , 2015, 2015 IEEE Asian Solid-State Circuits Conference (A-SSCC).

[13]  A. Tomkins,et al.  Nanoscale CMOS Transceiver Design in the 90–170-GHz Range , 2009, IEEE Transactions on Microwave Theory and Techniques.

[14]  Ahmad Mirzaei,et al.  Highly Integrated and Tunable RF Front Ends for Reconfigurable Multiband Transceivers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[15]  Meng Ling-qin A Wide-band and Low-noise RFIC Amplifier Design , 2005 .

[16]  Ahmad Mirzaei,et al.  A Low-Power Process-Scalable Super-Heterodyne Receiver With Integrated High-$Q$ Filters , 2011, IEEE Journal of Solid-State Circuits.

[17]  Noriaki Kaneda,et al.  A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link , 2013, IEEE Journal of Solid-State Circuits.

[18]  Mourad N. El-Gamal,et al.  A Sub-mW, Ultra-Low-Voltage, Wideband Low-Noise Amplifier Design Technique , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Rinaldo Castello,et al.  SAW-less analog front-end receivers for TDD and FDD , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[20]  D.K. Ma,et al.  A 17.1-17.3-GHz image-reject downconverter with phase-tunable LO using 3/spl times/ subharmonic injection locking , 2004, IEEE Journal of Solid-State Circuits.

[21]  André Bourdoux,et al.  19.7 A 79GHz binary phase-modulated continuous-wave radar transceiver with TX-to-RX spillover cancellation in 28nm CMOS , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[22]  Patrick Reynaert,et al.  A 40 nm CMOS E-Band Transmitter With Compact and Symmetrical Layout Floor-Plans , 2015, IEEE Journal of Solid-State Circuits.

[23]  Patrick Reynaert,et al.  An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[24]  Masaru Sato,et al.  A millimeter-wave CMOS low noise amplifier using transformer neutralization techniques , 2011, Asia-Pacific Microwave Conference 2011.

[25]  D. Manstretta,et al.  A broadband millimeter-wave passive CMOS down-converter , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[26]  B. Jagannathan,et al.  A 17.1 to 17.3 GHz image-reject down-converter with phase-tunable LO using 3/spl times/ subharmonic injection locking , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[27]  D.J. Allstot,et al.  G/sub m/-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-/spl mu/m CMOS , 2005, IEEE Journal of Solid-State Circuits.

[28]  Willy M. C. Sansen,et al.  1.3 Analog CMOS from 5 micrometer to 5 nanometer , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[29]  Nadav Mazor,et al.  High-Performance E-Band Transceiver Chipset for Point-to-Point Communication in SiGe BiCMOS Technology , 2016, IEEE Transactions on Microwave Theory and Techniques.

[30]  Seizo Onoe 1.3 Evolution of 5G mobile technology toward 1 2020 and beyond , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[31]  Sandipan Kundu,et al.  A Compact, Supply-Voltage Scalable 45–66 GHz Baseband-Combining CMOS Phased-Array Receiver , 2015, IEEE Journal of Solid-State Circuits.

[32]  Jonathan Wells,et al.  Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications , 2010 .

[33]  P. Garcia,et al.  A Wideband W-Band Receiver Front-End in 65-nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[34]  B. Razavi A study of injection locking and pulling in oscillators , 2004, IEEE Journal of Solid-State Circuits.

[35]  Jri Lee,et al.  A fully integrated 77GHz FMCW radar system in 65nm CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[36]  Jacques C. Rudell,et al.  An Ultra-Wideband IF Millimeter-Wave Receiver With a 20 GHz Channel Bandwidth Using Gain-Equalized Transformers , 2016, IEEE Journal of Solid-State Circuits.

[37]  Yuan Du,et al.  A Blocker-Tolerant Current Mode 60-GHz Receiver With 7.5-GHz Bandwidth and 3.8-dB Minimum NF in 65-nm CMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[38]  Marco Vigilante,et al.  On the Design of Wideband Transformer-Based Fourth Order Matching Networks for ${E}$ -Band Receivers in 28-nm CMOS , 2017, IEEE Journal of Solid-State Circuits.

[39]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[40]  Willy Sansen,et al.  analog design essentials , 2011 .

[41]  Hua Wang,et al.  A CMOS Broadband Power Amplifier With a Transformer-Based High-Order Output Matching Network , 2010, IEEE Journal of Solid-State Circuits.

[42]  Zhihua Wang,et al.  25.6 A 70.5-to-85.5GHz 65nm phase-locked loop with passive scaling of loop filter , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[43]  Andrea Bevilacqua,et al.  A 40–67 GHz Power Amplifier With 13 dBm ${\rm P}_{\rm SAT}$ and 16% PAE in 28 nm CMOS LP , 2015, IEEE Journal of Solid-State Circuits.

[44]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[45]  Behzad Razavi,et al.  Design considerations for direct-conversion receivers , 1997 .

[46]  David J. Allstot,et al.  A capacitor cross-coupled common-gate low-noise amplifier , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[47]  Antonio Liscidini Fundamentals of Modern RF Wireless Receivers: A Short Tutorial , 2015, IEEE Solid-State Circuits Magazine.