Three-dimensional reversed horseshoe vortex structures under broken solitary waves

Abstract Turbulent vortical structures under broken solitary waves are studied using three-dimensional smoothed particle hydrodynamics (SPH) method. The numerical model predicts water surface evolution and horizontal velocity very well in comparison with the experimental results. The numerical results detect organized coherent structures characterized as reversed horseshoe (hairpin) vortices being generated at the back of the broken spilling wave and traveling downward. The counter rotating legs of the reversed horseshoe structures appear to be a continuous form of the previously found obliquely descending eddies. The reversed horseshoe structures are associated with the turbulence motion of sweep events (downwelling motion) and transport momentum and turbulent kinetic energy downward into the water column. Vortex turning play an important role on the generation and evolution of three dimensional reversed horseshoe structures from the spanwise breaking wave rollers.

[1]  N. Kobayashi,et al.  Identification of intense, intermittent coherent motions under shoaling and breaking waves , 2000 .

[2]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[3]  J. Kirby,et al.  Dynamics of surf-zone turbulence in a strong plunging breaker , 1995 .

[4]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[5]  Michael Collins,et al.  Sediment resuspension on beaches: response to breaking waves , 2000 .

[6]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[7]  Massimiliano Giona,et al.  Laminar dispersion at high Péclet numbers in finite-length channels: Effects of the near-wall velocity profile and connection with the generalized Leveque problem , 2009 .

[8]  Hiroshi Saeki,et al.  Three-Dimensional Large Eddy Simulation of Breaking Waves , 1999 .

[9]  Robert A. Dalrymple,et al.  SPH on GPU with CUDA , 2010 .

[10]  A. Hussain,et al.  Coherent structures and turbulence , 1986, Journal of Fluid Mechanics.

[11]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[12]  J. Kirby,et al.  Observation of undertow and turbulence in a laboratory surf zone , 1994 .

[13]  Joseph John Monaghan,et al.  Scott Russell’s wave generator , 2000 .

[14]  Omar M. Knio,et al.  Using a Lagrangian Particle Method for Deck Overtopping , 2001 .

[15]  D. Peregrine,et al.  Wave Breaking in Deep Water , 1993 .

[16]  Francis C. K. Ting,et al.  Large-scale turbulence under a solitary wave , 2006 .

[17]  Frederic Raichlen,et al.  THE GENERATION OF LONG WAVES IN THE LABORATORY , 1980 .

[18]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[19]  P. Liu,et al.  Velocity, acceleration and vorticity under a breaking wave , 1998 .

[20]  Parviz Moin,et al.  The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields , 1984, Journal of Fluid Mechanics.

[21]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[22]  W. Willmarth,et al.  Structure of the Reynolds stress near the wall , 1972, Journal of Fluid Mechanics.

[23]  Robert A. Dalrymple,et al.  Green water overtopping analyzed with a SPH model , 2005 .

[24]  I. A. Svendsen Analysis of surf zone turbulence , 1987 .

[25]  J. Kirby,et al.  Dynamics of surf-zone turbulence in a spilling breaker , 1996 .

[26]  Kazuo Nadaoka,et al.  Structure of the turbulent flow field under breaking waves in the surf zone , 1989, Journal of Fluid Mechanics.

[27]  Nader A. Issa,et al.  Fluid motion generated by impact , 2003 .

[28]  R. Dalrymple,et al.  Three-Dimensional SPH Modeling of a Bar/Rip Channel System , 2014 .

[29]  S. L. Anderson,et al.  Statistics of Intermittent Surf Zone Turbulence and Observations of Large Eddies using PIV , 2001 .

[30]  Erik Damgaard Christensen,et al.  Large eddy simulation of breaking waves , 2001 .

[31]  P. Liu,et al.  Experimental investigation of turbulence generated by breaking waves in water of intermediate depth , 1999 .

[32]  B. Ruessink Observations of Turbulence within a Natural Surf Zone , 2010 .

[33]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[34]  Robert A. Dalrymple,et al.  Using a Three-Dimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure , 2004 .

[35]  Jinhee Jeong,et al.  On the identification of a vortex , 1995, Journal of Fluid Mechanics.

[36]  Lian Shen,et al.  Characteristics of coherent vortical structures in turbulent flows over progressive surface waves , 2009 .

[37]  Erik Damgaard Christensen,et al.  Large eddy simulation of spilling and plunging breakers , 2006 .

[38]  James M. Wallace,et al.  The wall region in turbulent shear flow , 1972, Journal of Fluid Mechanics.

[39]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[40]  J. Monaghan,et al.  Solitary Waves on a Cretan Beach , 1999 .

[41]  J. Battjes Surf-Zone Dynamics , 1988 .

[42]  P. Alfredsson,et al.  On the detection of turbulence-generating events , 1984, Journal of Fluid Mechanics.

[43]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[44]  Hiroshi Saeki,et al.  Three-dimensional vortex structures under breaking waves , 2005, Journal of Fluid Mechanics.