Energy Rate Density as a Technosignature : The Case for Stellivores

The energy rate density (ERD) metric is the central scientific measure underlying all of big history. It measures the rate at which free energy transits in a complex system of a given mass. How could it inform SETI and astrobiology? One simple way to proceed is to look for high ERD systems in the universe and binary systems in accretion are excellent candidates. I argue that these accreting binary systems might be instances of Type II stellar civilizations on Kardashev’s scale, civilizations feeding on stars, or stellivores. I review living clues, such as their sheer variety, their existence far from thermodynamic equilibrium, the fine-tuning of their models, the existence of reserves, accretion and ejection control. I summarize these clues using living systems theory. I use known binary stars masses and accretion rates to compute the ERD of putative stellivores, such as cataclysmic variables (130), neutron stars (30) and transient black holes (19). The results support an anomalously high ERD. I discuss objections and counterarguments regarding the stellivore hypothesis, and implications for big history.

[1]  Novae , 1942, Science.

[2]  Z. Kopal The classification of close binary systems , 1955 .

[3]  N. Kardashev Transmission of Information by Extraterrestrial Civilizations. , 1964 .

[4]  J. G. Miller Living systems. , 1972, Currents in modern biology.

[5]  K. Thorne Disk-Accretion onto a Black Hole. II. Evolution of the Hole , 1974 .

[6]  Joël de Rosnay,et al.  The macroscope: A new world scientific system , 1979 .

[7]  D. Raine,et al.  Accretion power in astrophysics , 1985 .

[8]  Yasuo Tanaka,et al.  X-ray bursts. , 1985 .

[9]  J. Paradijs,et al.  On the relation between X-ray burst properties and the persistent X-ray luminosity , 1988 .

[10]  J L Miller,et al.  The timer. , 1990, Behavioral science.

[11]  K. Borozdin,et al.  X-Ray Novae , 1993 .

[12]  L. Bildsten Propagation of Nuclear Burning Fronts on Accreting Neutron Stars: X-Ray Bursts and Sub-Hertz Noise , 1995 .

[13]  B. Warner The Cataclysmic Variable Stars , 1996 .

[14]  F. Spier The Structure of Big History: From the Big Bang until Today , 1996 .

[15]  J. Barrow,et al.  IMPOSSIBILITY : THE LIMITS OF SCIENCE AND THE SCIENCE OF LIMITS , 2009 .

[16]  E. Chaisson Cosmic Evolution: The Rise of Complexity in Nature , 2001 .

[17]  Moscow,et al.  New class of low frequency QPOs: Signature of nuclear burning or accretion disk instabilities? , 2000, astro-ph/0011110.

[18]  C. Hellier Cataclysmic Variable Stars - How and Why They Vary , 2001 .

[19]  R. Hilditch An Introduction to Close Binary Stars , 2001 .

[20]  E. Chaisson A unifying concept for astrobiology , 2003, International Journal of Astrobiology.

[21]  L. Bildsten,et al.  New Views of Thermonuclear Bursts , 2003, astro-ph/0301544.

[22]  Bas Kooijman,et al.  Dynamic Energy Budget Theory for Metabolic Organisation , 2005 .

[23]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[24]  A. Pross On the Emergence of Biological Complexity: Life as a Kinetic State of Matter , 2005, Origins of Life and Evolution of Biospheres.

[25]  P. Eggleton Evolutionary Processes in Binary and Multiple Stars , 2006 .

[26]  R. Aunger A rigorous periodization of 'big' history , 2007 .

[27]  D. Psaltis,et al.  Thermonuclear (Type I) X-Ray Bursts Observed by the Rossi X-Ray Timing Explorer , 2006, astro-ph/0608259.

[28]  F. Lamb,et al.  Accreting Neutron Stars in Low-Mass X-Ray Binary Systems , 2007, 0705.0155.

[29]  J. P. Osborne,et al.  Swift observations of the X-ray and UV evolution of V2491 Cyg (Nova Cyg 2008 No. 2) , 2009, 0909.1501.

[30]  B. Schaefer COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.

[31]  K. Long,et al.  Large amplitude variability from the persistent ultracompact X-ray binary in NGC 1851 , 2010, 1004.2351.

[32]  Observatoire de la Côte d'Azur,et al.  The growth of supermassive black holes fed by accretion disks , 2010, 1008.4150.

[33]  E. Meyer-Hofmeister,et al.  Broad iron emission lines in Seyfert galaxies - re-condensation of gas onto an inner disk below the ADAF? , 2011, 1101.4854.

[34]  Eric J. Chaisson,et al.  Energy rate density as a complexity metric and evolutionary driver , 2011, Complex..

[35]  J. M. Smart The transcension hypothesis: Sufficiently advanced civilizations invariably leave our universe, and implications for METI and SETI , 2012 .

[36]  G. Dubus,et al.  Revisiting a fundamental test of the disc instability model for X‐ray binaries , 2012, 1205.5038.

[37]  N. Murray,et al.  ON THE DYNAMICS OF ULTRA COMPACT X-RAY BINARIES: 4U 1850-087, 4U 0513-40, AND M15 X-2 , 2014, 1411.0368.

[38]  L. Chomiuk,et al.  The 2011 outburst of recurrent nova T Pyx: X-ray observations expose the white dwarf mass and ejection dynamics , 2014, 1404.3210.

[39]  J. T. Wright,et al.  THE Ĝ INFRARED SEARCH FOR EXTRATERRESTRIAL CIVILIZATIONS WITH LARGE ENERGY SUPPLIES. I. BACKGROUND AND JUSTIFICATION , 2014, 1408.1133.

[40]  K. Mukai,et al.  SUZAKU OBSERVATION OF THE CLASSICAL NOVA V2491 Cyg IN QUIESCENCE , 2015, 1506.03326.

[41]  J. Miller Stellivore Extraterrestrials ? Binary Stars as Living Systems , 2016 .

[42]  Jean-Paul Delahaye,et al.  Organized Complexity: is Big History a Big Computation? , 2016, ArXiv.

[43]  K. Mukai X-Ray Emissions from Accreting White Dwarfs: A Review , 2017, 1703.06171.

[44]  C. Messenger,et al.  A Deep Pulse Search in 11 Low Mass X-Ray Binaries , 2017, The Astrophysical Journal.

[45]  C. Vidal Pulsar positioning system: a quest for evidence of extraterrestrial engineering , 2017, International Journal of Astrobiology.

[46]  C. Tout,et al.  The implications of a companion enhanced wind on millisecond pulsar production , 2017, 1709.08289.

[47]  J. Lasota,et al.  Testing the disk instability model of cataclysmic variables , 2018, Astronomy & Astrophysics.

[48]  P. Bult,et al.  A NICER look at the Aql X-1 hard state , 2018, 1805.06850.