Nonlinear dynamic structural analysis using dynamic relaxation with zero damping

The main idea of the paper is to present a dynamic relaxation algorithm that does not require the damping matrix and velocity terms. The general formulation suggested in this article covers the common DRM as well. In order to verify the ability of the new technique, the obtained static and dynamic solutions are checked with the ones found by the other scheme. When the loads are variable and the behavior of the system is extremely nonlinear, the proposed procedure works efficiently.

[1]  M. A. Crisfield,et al.  Non-Linear Finite Element Analysis of Solids and Structures: Advanced Topics , 1997 .

[2]  P. J. Dowling,et al.  Application of dynamic relaxation to the large deflection elasto-plastic analysis of plates , 1978 .

[3]  W. Wall,et al.  Fixed-point fluid–structure interaction solvers with dynamic relaxation , 2008 .

[4]  M. Hakkak,et al.  NONLINEAR ANALYSIS OF TRUSS STRUCTURES USING DYNAMIC RELAXATION , 2006 .

[5]  D. M. Brotton,et al.  Non‐linear structural analysis by dynamic relaxation , 1971 .

[6]  N. F. Knight,et al.  Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures Part I. Formulation , 1995 .

[7]  Geoffrey Turvey,et al.  Elasto-plastic response of uniformly loaded sector plates: full-section yield model predictions and spread of plasticity , 2001 .

[8]  M. Xie,et al.  FEM Modeling of Fictitious Crack Propagation in Concrete , 1992 .

[9]  F.A.N. Al-Shawi,et al.  An improved dynamic relaxation method for the analysis of plate bending problems , 1987 .

[10]  B. Topping,et al.  Parallel Dynamic Relaxation Formfinding , 1999 .

[11]  Manouchehr Salehi,et al.  Large deflection analysis of elastic sector Mindlin plates , 1994 .

[12]  Qiang Shizhong,et al.  An adaptive dynamic relaxation method for nonlinear problems , 1988 .

[13]  J. Bunce,et al.  A note on the estimation of critical damping in dynamic relaxation , 1972 .

[14]  Geoffrey Turvey,et al.  On the application of a limiting process to the dynamic relaxation analysis of circular membranes, circular plates and spherical shells , 1993 .

[15]  C. S. Krishnamoorthy,et al.  Geometrically non-linear analysis of plates and shallow shells by dynamic relaxation , 1995 .

[16]  Wanming Zhai,et al.  TWO SIMPLE FAST INTEGRATION METHODS FOR LARGE‐SCALE DYNAMIC PROBLEMS IN ENGINEERING , 1996 .

[17]  Ilson P. Pasqualino,et al.  A nonlinear analysis of the buckle propagation problem in deepwater pipelines , 2001 .

[18]  Peter Ivanyi,et al.  Computer Aided Design of Cable Membrane Structures , 2008 .

[19]  Tongxi Yu,et al.  Modified adaptive Dynamic Relaxation method and its application to elastic-plastic bending and wrinkling of circular plates , 1989 .

[20]  Manolis Papadrakakis,et al.  A survey of quasi‐Newton methods with reduced storage , 1993 .

[21]  David R. Oakley,et al.  Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures Part III. Parallel implementation , 1995 .

[22]  Geoffrey Turvey,et al.  DR large deflection analysis of sector plates , 1990 .

[23]  P. J. Dowling,et al.  Interactive buckling analysis of box sections using dynamic relaxation , 1978 .

[24]  Ian F. C. Smith,et al.  Developing intelligent tensegrity structures with stochastic search , 2002, Adv. Eng. Informatics.

[25]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[26]  Mehran Kadkhodayan,et al.  A consistent DXDR method for elastic‐plastic problems , 1995 .

[27]  K. J. BATHES,et al.  NONLINEAR DYNAMIC ANALYSIS OF COMPLEX STRUCTURES , 2006 .

[28]  Geoffrey Turvey,et al.  Large deflection analysis of eccentrically stiffened sector plates. , 1998 .

[29]  C. S. Krishnamoorthy,et al.  Inelastic post‐buckling analysis of truss structures by dynamic relaxation method , 1994 .

[30]  Joel P. Conte,et al.  Finite Element Response Sensitivity Analysis: a comparison between force-based and Displacement-Based Frame Element Models , 2005 .

[31]  R. E. Hobbs,et al.  Numerical stability of dynamic relaxation analysis of non‐linear structures , 1976 .

[32]  S. Frankel Convergence rates of iterative treatments of partial differential equations , 1950 .

[33]  C. S. Krishnamoorthy,et al.  Post‐buckling analysis of structures by dynamic relaxation , 1993 .

[34]  Javad Alamatian,et al.  A new fictitious time for the dynamic relaxation (DXDR) method , 2008 .

[35]  A. R. Sobhani,et al.  Elastic linear and non-linear analysis of fiber-reinforced symmetrically laminated sector Mindlin plate , 2004 .

[36]  W. L. Wood Note on dynamic relaxation , 1971 .

[37]  Sang-Eul Han,et al.  A Study on the Stabilizing Process of Unstable Structures by Dynamic Relaxation Method , 2003 .

[38]  G. Turvey,et al.  Annular sector plates: Comparison of full-section and layer yield predictions , 2005 .

[39]  Barry Hilary Valentine Topping,et al.  Parallel computation schemes for dynamic relaxation , 1994 .

[40]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[41]  Mehran Kadkhodayan,et al.  Analyses of wrinkling and buckling of elastic plates by DXDR method , 1997 .

[42]  Manolis Papadrakakis,et al.  A method for the automatic evaluation of the dynamic relaxation parameters , 1981 .

[43]  Javad Alamatian,et al.  Nonlinear dynamic analysis by Dynamic Relaxation method , 2008 .

[44]  Yiu-Wing Mai,et al.  DEVELOPMENT OF THE maDR METHOD , 1994 .

[45]  Javad Alamatian,et al.  Implicit Higher-Order Accuracy Method for Numerical Integration in Dynamic Analysis , 2008 .

[46]  A. Chan,et al.  Further development of the reduced basis method for geometric nonlinear analysis , 1987 .

[47]  Dynamic renormalization-group approach to growing surfaces with point-defects , 2000 .

[48]  O. C. Zienkiewicz,et al.  Accelerated ‘relaxation’ or direct solution? Future prospects for fem , 1985 .

[49]  D. S. Wakefield,et al.  Engineering analysis of tension structures: theory and practice , 1999 .

[50]  Javad Alamatian,et al.  Numerical time integrationfor dynamic analysis using a newhigher order predictor-corrector method , 2008 .

[51]  M. Toulios,et al.  The effect of aspect ratio on the elastoplastic response of stiffened plates loaded in uniaxial edge compression , 2002 .

[52]  D. S. Wakefield,et al.  Interactive graphic cad for tension structures , 1991 .

[53]  R. S. Alwar,et al.  An alternative procedure in dynamic relaxation , 1975 .

[54]  N. Cristescu,et al.  On dynamic relaxation , 1967 .

[55]  E. V. Krishnamurthy,et al.  Numerical algorithms : computations in science and engineering , 2008 .

[56]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[57]  David R. Oakley,et al.  Adaptive dynamic relaxation algorithm for non-linear hyperelastic structures Part II. Single-processor implementation , 1995 .

[58]  Jean-Pierre Bardet,et al.  Adaptative dynamic relaxation for statics of granular materials , 1991 .

[59]  R. D. Wood A simple technique for controlling element distortion in dynamic relaxation form-finding of tension membranes , 2002 .

[60]  Ian F. C. Smith,et al.  COMBINING DYNAMIC RELAXATION METHOD WITH ARTIFICIAL NEURAL NETWORKS TO ENHANCE SIMULATION OF TENSEGRITY STRUCTURES , 2003 .

[61]  Sigrid Adriaenssens,et al.  Tensegrity Spline Beam and Grid Shell Structures , 2001 .

[62]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[63]  István Sajtos,et al.  Eight-node quadrilateral double-curved surface element for membrane analysis , 2006 .

[64]  Manouchehr Salehi,et al.  Dynamic relaxation large deflection analysis of non-axisymmetric circular viscoelastic plates , 2005 .

[65]  김기범,et al.  Dynamics of Structures : Theory and Applications to Earthquake Engineering, Second Edition , 2010 .