Constrained manifold learning for the characterization of pathological deviations from normality

This paper describes a technique to (1) learn the representation of a pathological motion pattern from a given population, and (2) compare individuals to this population. Our hypothesis is that this pattern can be modeled as a deviation from normal motion by means of non-linear embedding techniques. Each subject is represented by a 2D map of local motion abnormalities, obtained from a statistical atlas of myocardial motion built from a healthy population. The algorithm estimates a manifold from a set of patients with varying degrees of the same disease, and compares individuals to the training population using a mapping to the manifold and a distance to normality along the manifold. The approach extends recent manifold learning techniques by constraining the manifold to pass by a physiologically meaningful origin representing a normal motion pattern. Interpolation techniques using locally adjustable kernel improve the accuracy of the method. The technique is applied in the context of cardiac resynchronization therapy (CRT), focusing on a specific motion pattern of intra-ventricular dyssynchrony called septal flash (SF). We estimate the manifold from 50 CRT candidates with SF and test it on 37 CRT candidates and 21 healthy volunteers. Experiments highlight the relevance of non-linear techniques to model a pathological pattern from the training set and compare new individuals to this pattern.

[1]  Saburou Saitoh,et al.  Theory of Reproducing Kernels and Its Applications , 1988 .

[2]  Renaud Keriven,et al.  Projection onto a Shape Manifold for Image Segmentation with Prior , 2007, 2007 IEEE International Conference on Image Processing.

[3]  D. Delurgio,et al.  Effect of Cardiac Resynchronization Therapy on Left Ventricular Size and Function in Chronic Heart Failure , 2003, Circulation.

[4]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[5]  E. Remme,et al.  Mechanisms of Abnormal Systolic Motion of the Interventricular Septum During Left Bundle-Branch Block , 2011, Circulation. Cardiovascular imaging.

[6]  Klaus-Robert Müller,et al.  Feature Discovery in Non-Metric Pairwise Data , 2004, J. Mach. Learn. Res..

[7]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[8]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[9]  Daniel Rueckert,et al.  Comparison of Cardiac Motion Fields from Tagged and Untagged MR Images Using Nonrigid Registration , 2005, FIMH.

[10]  Stefan Klöppel,et al.  Multivariate models of inter-subject anatomical variability , 2011, NeuroImage.

[11]  Heeyoul Choi,et al.  Robust kernel Isomap , 2007, Pattern Recognit..

[12]  John N Oshinski,et al.  It's time for a paradigm shift in the quantitative evaluation of left ventricular dyssynchrony. , 2009, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[13]  Daniel Rueckert,et al.  Spatial transformation of motion and deformation fields using nonrigid registration , 2004, IEEE Transactions on Medical Imaging.

[14]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[15]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[16]  Brandon K. Fornwalt,et al.  The dyssynchrony in predicting response to cardiac resynchronization therapy: a call for change. , 2011, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[17]  Hongyuan Zha,et al.  Adaptive Manifold Learning , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Francesco Camastra,et al.  Data dimensionality estimation methods: a survey , 2003, Pattern Recognit..

[19]  Helge J. Ritter,et al.  Principal surfaces from unsupervised kernel regression , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Ross T. Whitaker,et al.  Manifold modeling for brain population analysis , 2010, Medical Image Anal..

[21]  D. Dutka,et al.  Effect of low-amplitude two-dimensional radial strain at left ventricular pacing sites on response to cardiac resynchronization therapy. , 2010, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[22]  Ross T. Whitaker,et al.  Dimensionality reduction and principal surfaces via Kernel Map Manifolds , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[23]  Joan Alexis Glaunès Transport par difféomorphismes de points, de mesures et de courants pour la comparaison de formes et l'anatomie numérique , 2005 .

[24]  R. Coifman,et al.  Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions , 2006 .

[25]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[26]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[27]  K. Amunts,et al.  Towards multimodal atlases of the human brain , 2006, Nature Reviews Neuroscience.

[28]  Jeroen J. Bax,et al.  Is Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Clinically Useful? Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Is Clinically Useful Response by Sung and Foster on P 655 Controversies in Cardiovascular Medicine , 2022 .

[29]  Alejandro F. Frangi,et al.  Temporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography , 2012, Medical Image Anal..

[30]  Finn Gustafsson,et al.  2010 Focused Update of ESC Guidelines on Device Therapy in Heart Failure , 2011 .

[31]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[32]  F. Rademakers,et al.  Assessment of apical rocking: a new, integrative approach for selection of candidates for cardiac resynchronization therapy. , 2010, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[33]  Stanley Durrleman,et al.  Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. (Modèles statistiques de courants pour mesurer la variabilité anatomique de courbes, de surfaces et de leur évolution) , 2010 .

[34]  Timothy F. Cootes,et al.  Building 3-D Statistical Shape Models by Direct Optimization , 2010, IEEE Transactions on Medical Imaging.

[35]  Jian-Huang Lai,et al.  Penalized Preimage Learning in Kernel Principal Component Analysis , 2010, IEEE Transactions on Neural Networks.

[36]  Alejandro F. Frangi,et al.  Temporal Diffeomorphic Free Form Deformation (TDFFD) Applied to Motion and Deformation Quantification of Tagged MRI Sequences , 2011, STACOM.

[37]  G. Wahba,et al.  A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines , 1970 .

[38]  Seungjin Choi,et al.  Neighbor search with global geometry: a minimax message passing algorithm , 2007, ICML '07.

[39]  Alejandro F Frangi,et al.  Computational cardiac atlases: from patient to population and back , 2009, Experimental physiology.

[40]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[41]  Reza Razavi,et al.  Relationship between endocardial activation sequences defined by high-density mapping to early septal contraction (septal flash) in patients with left bundle branch block undergoing cardiac resynchronization therapy. , 2012, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[42]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[43]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[44]  Charles F. Manski Analog Estimation Methods in Econometrics: Chapman & Hall/CRC Monographs on Statistics & Applied Probability , 1988 .

[45]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[46]  Françoise J. Prêteux,et al.  Building and using a statistical 3D motion atlas for analyzing myocardial contraction in MRI , 2004, SPIE Medical Imaging.

[47]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[48]  Alejandro F. Frangi,et al.  A spatiotemporal statistical atlas of motion for the quantification of abnormal myocardial tissue velocities , 2011, Medical Image Anal..

[49]  E. Foster,et al.  Assessment of Systolic Dyssynchrony for Cardiac Resynchronization Therapy Is Not Clinically Useful , 2011, Circulation.

[50]  F. Prinzen,et al.  Septal rebound stretch reflects the functional substrate to cardiac resynchronization therapy and predicts volumetric and neurohormonal response , 2009, European journal of heart failure.

[51]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[52]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[53]  Alejandro F. Frangi,et al.  SPM to the heart: Mapping of 4D continuous velocities for motion abnormality quantification , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[54]  T. Hastie,et al.  Principal Curves , 2007 .

[55]  Alejandro F. Frangi,et al.  Characterizing Pathological Deviations from Normality Using Constrained Manifold-Learning , 2011, MICCAI.

[56]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[57]  Thomas H. Marwick,et al.  Myocardial Imaging: Tissue Doppler and Speckle Tracking , 2009 .

[58]  Piet Claus,et al.  Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. , 2009, European heart journal.

[59]  Daniel Rueckert,et al.  Diffeomorphic Registration Using B-Splines , 2006, MICCAI.

[60]  A. Støylen,et al.  Real-time strain rate imaging of the left ventricle by ultrasound. , 1998, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.