Short rational functions for toric algebra and applications
暂无分享,去创建一个
Jesús A. De Loera | Bernd Sturmfels | Ruriko Yoshida | David Haws | Raymond Hemmecke | Peter Huggins
[1] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[2] Alexander I. Barvinok,et al. A Polynomial Time Algorithm for Counting Integral Points in Polyhedra when the Dimension Is Fixed , 1993, FOCS.
[3] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[4] A. Barvinok,et al. Short rational generating functions for lattice point problems , 2002, math/0211146.
[5] Polyhedral Cones of Magic Cubes and Squares , 2002, math/0201108.
[6] Teo Mora,et al. The Gröbner Fan of an Ideal , 1988, J. Symb. Comput..
[7] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[8] B. Sturmfels. Gröbner bases and convex polytopes , 1995 .
[9] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[10] R. Stanley. Combinatorics and commutative algebra , 1983 .
[11] Jean B. Lasserre,et al. Integer programming, Barvinok's counting algorithm and Gomory relaxations , 2004, Oper. Res. Lett..
[12] R. Stanley. What Is Enumerative Combinatorics , 1986 .