Material dependence of the distributed bolometric effect in resonant metallic nanostructures
暂无分享,去创建一个
[1] James C. Ginn,et al. Phase shaping in the infrared by planar quasi -periodic surfaces comprised of sub-wavelength elements , 2009 .
[2] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[3] K. Saraswat,et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna , 2008 .
[4] Lukas Novotny,et al. Effective wavelength scaling for optical antennas. , 2007, Physical review letters.
[5] P. Lambkin,et al. Characterisation of CMOS compatible uncooled microbolometers , 2000, 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399).
[6] S. Maier,et al. Plasmonics: Metal Nanostructures for Subwavelength Photonic Devices , 2006, IEEE Journal of Selected Topics in Quantum Electronics.
[7] Gordon S. Kino,et al. Optical antennas: Resonators for local field enhancement , 2003 .
[8] F. J. González,et al. Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .
[9] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[10] A. Abdel-azim. Fundamentals of Heat and Mass Transfer , 2011 .
[11] Javier Alda,et al. Optical antennas for nano-photonic applications , 2005 .
[12] Javier Alda,et al. Distributed bolometric effect in optical antennas and resonant structures , 2012 .
[13] Richard Corkish,et al. Solar energy collection by antennas , 2002 .
[14] F. J. González,et al. THERMAL IMPEDANCE MODEL OF ELECTROSTATIC DISCHARGE EFFECTS ON MICROBOLOMETERS , 2000 .
[15] Attay Kovetz,et al. The principles of electromagnetic theory , 1990 .