Lithium-air and lithium-sulfur batteries

Reducing our dependence on fossil fuels increases the demand for energy storage. Lithium-ion batteries have transformed portable electronics and will continue to be important but cannot deliver the step change in energy density required in the longer term in markets such as electric vehicles and the storage of electricity from renewables. There are a few alternatives. Here we describe two: Li-air and Li-sulfur batteries. We compare the energy densities of Li-ion, Li-air, and Li-S and discuss their differences and the challenges facing Li-air and Li-S, many of which are materials related.

[1]  Wu Xu,et al.  Crown Ethers in Nonaqueous Electrolytes for Lithium/Air Batteries , 2010 .

[2]  Tao Zhang,et al.  Study on lithium/air secondary batteries—Stability of NASICON-type lithium ion conducting glass–ceramics with water , 2009 .

[3]  Tao Zhang,et al.  Stability of a Water-Stable Lithium Metal Anode for a Lithium–Air Battery with Acetic Acid–Water Solutions , 2010 .

[4]  Shuo Chen,et al.  Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. , 2010, Journal of the American Chemical Society.

[5]  Matthew H. Ervin,et al.  Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery , 2003 .

[6]  Fuminori Mizuno,et al.  Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes , 2010 .

[7]  Tao Zhang,et al.  Lithium anode for lithium-air secondary batteries , 2008 .

[8]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[9]  Sanjeev Mukerjee,et al.  Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium−Air Battery , 2010 .

[10]  P. Bruce,et al.  Reactions in the rechargeable lithium-O2 battery with alkyl carbonate electrolytes. , 2011, Journal of the American Chemical Society.

[11]  K. M. Abraham,et al.  A low temperature NaS battery incorporating A soluble S cathode , 1978 .

[12]  Elton J. Cairns,et al.  Characterization of N-Methyl-N-Butylpyrrolidinium Bis(trifluoromethanesulfonyl)imide-LiTFSI-Tetra(ethylene glycol) Dimethyl Ether Mixtures as a Li Metal Cell Electrolyte , 2008 .

[13]  Jeffrey Read,et al.  Characterization of the Lithium/Oxygen Organic Electrolyte Battery , 2002 .

[14]  Sanjeev Mukerjee,et al.  Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications , 2009 .

[15]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[16]  Xinping Qiu,et al.  Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries , 2009 .

[17]  Wei Liu,et al.  Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air , 2010 .

[18]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[19]  Ping He,et al.  Preparation of mesocellular carbon foam and its application for lithium/oxygen battery , 2009 .

[20]  Ben Wang,et al.  Lithium–Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes , 2010 .

[21]  Sanjeev Mukerjee,et al.  Rechargeable Lithium/TEGDME- LiPF6 ∕ O2 Battery , 2011 .

[22]  Annie Pradel,et al.  Electrical properties of lithium conductive silicon sulfide glasses prepared by twin roller quenching , 1986 .

[23]  R. D. Rauh,et al.  Formation of lithium polysulfides in aprotic media , 1977 .

[24]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[25]  Sun Tai Kim,et al.  Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air , 2010 .

[26]  P. Bruce,et al.  Rechargeable LI2O2 electrode for lithium batteries. , 2006, Journal of the American Chemical Society.

[27]  Yair Ein-Eli,et al.  Review on Liair batteriesOpportunities, limitations and perspective , 2011 .

[28]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[29]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[30]  B. McCloskey,et al.  Lithium−Air Battery: Promise and Challenges , 2010 .

[31]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[32]  Elton J. Cairns,et al.  N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte , 2008 .

[33]  G. Henriksen,et al.  High temperature lithium/sulfide batteries , 1993 .

[34]  Wenbin Zheng,et al.  Novel nanosized adsorbing sulfur composite cathode materials for the advanced secondary lithium batteries , 2006 .

[35]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[36]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[37]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[38]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .