Dicalcium nitride, Ca2N - a 2D "excess electron" compound; synthetic routes and crystal chemistry

The subnitride Ca2N has been prepared via several synthetic routes described for the first time, including reduction of Ca3N2 and reaction of Ca metal dissolved in liquid sodium with nitrogen gas. Products have been characterised by powder X-ray and powder neutron diffraction. Crystallite morphology and compound stoichiometry have been examined by SEM/EDAX. Ca2N crystallises with a hexagonal layered structure in space group Rtext-decoration:overline3m (a = 3.62872(3) A, c = 19.0921(4) A, V = 217.72(1) A3, Z = 3, c/a = 5.26). [NCa2]+ layers composed of compressed, edge-sharing NCa6 octahedra stack along the c-axis and are separated by large 'van der Waals' gaps. The material is metallic and paramagnetic at room temperature. The c-parameter, [NCa2]+ layer thickness and interlayer gap are larger than previously reported and there is no evidence of hydride or other anion intercalation between layers.

[1]  J. Aubry,et al.  Etude structurale de Ca2NH par diffraction des rayons X, diffraction des neutrons et résonance magnétique nucléaire du proton dans le solide , 1976 .

[2]  D. Gregory,et al.  Synthesis and Structure of Ca6MnN5: A New Nitridomanganate with Planar [MnN3]6- Anions , 1995 .

[3]  G. Meaden,et al.  Electrical resistance of metals , 1965 .

[4]  U. Steinbrenner,et al.  Ba3N – a New Binary Nitride of an Alkaline Earth Metal , 1998 .

[5]  A. Simon,et al.  The New Subnitride NaBa3N; an Extension of Alkali Metal Suboxide Chemistry , 1992 .

[6]  A. Simon,et al.  The Infinite Chain Nitride Na5Ba3N. A One-Dimensional Void Metal? , 1995, Journal of the American Chemical Society.

[7]  D. Louër,et al.  Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method , 1991 .

[8]  N. Hamada,et al.  Band structure of Ag2F , 1986 .

[9]  Jürgen Jäger,et al.  Ca3AuN : a calcium auride subnitride , 1993 .

[10]  N. Brese,et al.  Synthesis and crystal structure of SrD2 and SrND and bond valence parameters for hydrides , 1990 .

[11]  F. Disalvo,et al.  Ag8Ca19N7 – Nitrogen Bridged Ca19N7 Superoctahedra surrounded by Silver Tetrahedra , 2000 .

[12]  A. Rabenau,et al.  Re-evaluation of the lithium nitride structure , 1976 .

[13]  Y. Laurent,et al.  Structure du nitrure de calcium α , 1968 .

[14]  C. Hadenfeldt,et al.  Darstellung und Kristallstruktur der Calciumnitridhalogenide Ca2NCl und Ca2NBr , 1987 .

[15]  K. Kitazawa,et al.  Galvanomagnetic Properties and Anisotropy of Ag2F , 1988 .

[16]  N. Brese,et al.  Synthesis, crystal structure, and physical properties of Sr2N , 1990 .

[17]  F. Disalvo,et al.  Ca11N6(CN2)2 and Ca4N2(CN2): The True Nature of an “Unusual Binary Nitride” Is Finally Revealed , 2000 .

[18]  G. J. Snyder,et al.  Discrete M6N Octahedra in the Subnitrides Na16 Ba6N and Ag16Ca6N: A Reconsideration of the Ag8Ca3 Structure Type , 1994 .

[19]  K. Reimann,et al.  Kristallstrukturbestimmung an einer Strontium-hydrid-imid-nitrid-Phase – Sr2(H)N/SrNH bzw. Sr2(D)N/SrND – mit Röntgen-, Neutronen- und Synchrotron-Strahlung , 1997 .

[20]  H. Jacobs,et al.  Synthesis and crystal structure of a calcium nitride deuteride Ca2ND , 1995 .

[21]  M. Ikezawa,et al.  Anisotropic Drude Reflectivity of Ag2F Crystal , 1991 .

[22]  M. Weller,et al.  Ca2 AuN: A Nitride Containing Infinite Zigzag Gold Chains. , 1998, Angewandte Chemie.

[23]  R. Young,et al.  A new computer program for Rietveld analysis of X-ray powder diffraction patterns , 1981 .

[24]  E. N. Lassettre,et al.  THE CRYSTAL STRUCTURE OF TRICESIUM MONOXIDE , 1956 .

[25]  W. B. Pearson,et al.  The crystal chemistry and physics of metals and alloys , 1972 .

[26]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .