A posteriori error estimation and anisotropy detection with the dual‐weighted residual method

In this work we develop a new framework for a posteriori error estimation and detection of anisotropies based on the dual-weighted residual (DWR) method by Becker and Rannacher. The common approach for anisotropic mesh adaptation is to analyze the Hessian of the solution. Eigenvalues and eigenvectors indicate dominant directions and optimal stretching of elements. However, this approach is firmly linked to energy norm error estimation. Here, we extend the DWR method to anisotropic finite elements allowing for the direct estimation of directional errors with regard to given output functionals. The resulting meshes reflect anisotropic properties of both the solution and the functional. For the optimal measurement of the directional errors, the coarse meshes need some alignment with the dominant anisotropies. Numerical examples will demonstrate the efficiency of this method on various three-dimensional problems including a well-known Navier–Stokes benchmark. Copyright © 2009 John Wiley & Sons, Ltd.

[1]  Roland Becker,et al.  A posteriori error estimation for finite element discretization of parameter identification problems , 2004, Numerische Mathematik.

[2]  R. Rannacher,et al.  Benchmark Computations of Laminar Flow Around a Cylinder , 1996 .

[3]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[4]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[5]  Serge Nicaise,et al.  The inf-sup condition for low order elements on anisotropic meshes , 2004 .

[6]  L. Formaggia,et al.  Anisotropic mesh adaptation in computational fluid dynamics: application to the advection-diffusion-reaction and the Stokes problems , 2004 .

[7]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[8]  Ralf Hartmann,et al.  Anisotropic mesh refinement for discontinuous Galerkin methods in two‐dimensional aerodynamic flow simulations , 2008 .

[9]  Mark Ainsworth,et al.  The Stability of Mixed hp-Finite Element Methods for Stokes Flow on High Aspect Ratio Elements , 2000, SIAM J. Numer. Anal..

[10]  Thomas Richter Parallel Multigrid Method for Adaptive Finite Elements with Application to 3D Flow Problems , 2005 .

[11]  Malte Braack A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes , 2008 .

[12]  O. C. Zienkiewicz,et al.  Automatic directional refinement in adaptive analysis of compressible flows , 1994 .

[13]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[14]  Thomas Richter,et al.  Local Projection Stabilization for the Stokes System on Anisotropic Quadrilateral Meshes , 2006 .

[15]  R. B. Simpson,et al.  On optimal interpolation triangle incidences , 1989 .

[16]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[17]  John A. Gregory,et al.  Interpolation remainder theory from taylor expansions on triangles , 1975 .

[18]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[19]  T. Richter,et al.  SOLUTIONS OF 3D NAVIER-STOKES BENCHMARK PROBLEMS WITH ADAPTIVE FINITE ELEMENTS , 2006 .

[20]  D. Venditti,et al.  Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows , 2003 .

[21]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[22]  Serge Nicaise,et al.  The inf-sup condition for the Bernardi-Fortin-Raugel element on anisotropic meshes , 2003 .

[23]  Simona Perotto,et al.  An anisotropic a-posteriori error estimate for a convection-diffusion problem , 2001 .

[24]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .