Performance Issues in Parallel Processing Systems

Simply put, the goal of performance analysis is to provide the data and insights required to optimize the execution behavior of application or system components. Using such data and insights, application and system developers can choose to optimize software and execution environments along many axes, including execution time, memory requirements, and resource use. Given the diversity of performance optimization goals and the wide range of possible problems, a complete performance analysis toolkit necessarily includes a broad range of techniques. These range from mechanisms for simple code timings to multi-level hardware/software measurement and correlation across networks, system software, runtime libraries, compile-time code transformations, and adaptive execution.

[1]  Sougata Mukherjea,et al.  Glyphmaker: creating customized visualizations of complex data , 1994, Computer.

[2]  Daniel A. Reed,et al.  Performance Analysis of Parallel Systems Approaches and Open Problems , 2001 .

[3]  Michael T. Heath,et al.  Visualizing the performance of parallel programs , 1991, IEEE Software.

[4]  Joseph A. Fisher,et al.  Trace Scheduling: A Technique for Global Microcode Compaction , 1981, IEEE Transactions on Computers.

[5]  Barton P. Miller,et al.  The Paradyn Parallel Performance Measurement Tool , 1995, Computer.

[6]  Jeffrey S. Vetter Computational steering annotated bibliography , 1997, SIGP.

[7]  Mariacarla Calzarossa,et al.  Medea: a tool for workload characterization of parallel systems , 1995, IEEE Parallel Distributed Technol. Syst. Appl..

[8]  Viera Sipková,et al.  Parallelizing Irregular Applications with the Vienna HPF+ Compiler VFC , 1998, HPCN Europe.

[9]  Daniel A. Reed,et al.  Experimental Analysis of Parallel Systems: Techniques and Open Problems , 1994, Computer Performance Evaluation.

[10]  D.A. Reed,et al.  Scalable performance analysis: the Pablo performance analysis environment , 1993, Proceedings of Scalable Parallel Libraries Conference.

[11]  Mariacarla Calzarossa,et al.  Integration of a Compilation System and a Performance Tool: The HPF+ Approach , 1998, HPCN Europe.

[12]  Daniel A. Reed,et al.  Performance scalability prediction on multicomputers , 1997 .

[13]  Andreas Buja,et al.  Analyzing High-Dimensional Data with Motion Graphics , 1990, SIAM J. Sci. Comput..

[14]  Stephen Gilmore,et al.  PEPA Nets: A Structured Performance Modelling Formalism , 2002, Computer Performance Evaluation / TOOLS.

[15]  D.A. Reed,et al.  An Integrated Compilation and Performance Analysis Environment for Data Parallel Programs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[16]  Scott A. Mahlke,et al.  Using profile information to assist classic code optimizations , 1991, Softw. Pract. Exp..

[17]  Jock D. Mackinlay,et al.  Information visualization using 3D interactive animation , 1993, CACM.

[18]  Ken Kennedy,et al.  A static performance estimator to guide data partitioning decisions , 1991, PPOPP '91.

[19]  Thomas Fahringer,et al.  Performance range comparison for restructuring compilation , 1998, Proceedings. 1998 International Conference on Parallel Processing (Cat. No.98EX205).

[20]  S. Turner,et al.  Performance Analysis Using the MIPS R10000 Performance Counters , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[21]  Thomas Fahringer,et al.  An Effectiveness Study of Parallelizing Compiler Techniques , 1991, ICPP.

[22]  Thomas Fahringer Estimating and Optimizing Performance for Parallel Programs , 1995, Computer.

[23]  Michael T. Heath,et al.  The Visual Display of Parallel Performance Data , 1995, Computer.

[24]  Peter Brezany,et al.  Vienna Fortran Compilation System - Version 1.2 - User's Guide , 1996 .

[25]  Evgenia Smirni,et al.  I/O, performance analysis, and performance data immersion , 1996, Proceedings of MASCOTS '96 - 4th International Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.

[26]  Philip C. Roth,et al.  Real-Time Statistical Clustering for Event Trace Reduction , 1997, Int. J. High Perform. Comput. Appl..

[27]  Dennis Gannon,et al.  Distributed pC++ Basic Ideas for an Object Parallel Language , 1993, Sci. Program..

[28]  Susan L. Graham,et al.  Gprof: A call graph execution profiler , 1982, SIGPLAN '82.

[29]  Ying Zhang,et al.  SvPablo: A Multi-language Performance Analysis System , 1998, Computer Performance Evaluation.

[30]  Karsten Schwan,et al.  Falcon: On‐line monitoring for steering parallel programs , 1998 .

[31]  Jeffrey S. Vetter,et al.  Autopilot: adaptive control of distributed applications , 1998, Proceedings. The Seventh International Symposium on High Performance Distributed Computing (Cat. No.98TB100244).

[32]  Allen D. Malony,et al.  Performance Measurement Intrusion and Perturbation Analysis , 1992, IEEE Trans. Parallel Distributed Syst..

[33]  Eileen Kraemer,et al.  The Visualization of Parallel Systems: An Overview , 1993, J. Parallel Distributed Comput..

[34]  Lawrence J. Rosenblum,et al.  Research issues in scientific visualization , 1994, IEEE Computer Graphics and Applications.

[35]  John Domingue,et al.  Software visualization : programming as a multimedia experience , 1998 .

[36]  Robert P. Colwell,et al.  A VLIW architecture for a trace scheduling compiler , 1987, ASPLOS 1987.

[37]  Alva L. Couch Graphical representations of program performance on hypercube message-passing multiprocessors , 1988 .

[38]  James R. Larus,et al.  EEL: machine-independent executable editing , 1995, PLDI '95.

[39]  M. E. McGill,et al.  Dynamic Graphics for Statistics , 1988 .

[40]  Pankaj Mehra,et al.  Performance measurement, visualization and modeling of parallel and distributed programs using the AIMS toolkit , 1995, Softw. Pract. Exp..

[41]  M.I.T. Press,et al.  The International Journal of Supercomputer Applications and High Performance Computing— , 1994 .

[42]  Sougata Mukherjea,et al.  Using Glyphmaker to Create Customized Visualizations of Complex Data , 1993 .

[43]  Jock D. Mackinlay,et al.  Information visualization using 3D interactive animation : Graphical user interfaces : the next generation , 1993 .