Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure

[1]  P. R. Westmoreland,et al.  Identification of C5Hx isomers in fuel-rich flames by photoionization mass spectrometry and electronic structure calculations. , 2005, The journal of physical chemistry. A.

[2]  Burak Atakan,et al.  Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap , 2006 .

[3]  James A. Miller,et al.  Kinetic and thermodynamic issues in the formation of aromatic compounds in flames of aliphatic fuels , 1992 .

[4]  Lionel Poisson,et al.  Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry , 2003 .

[5]  Claudio Bertoli,et al.  New Findings on Combustion Behavior of Oxygenated Synthetic Diesel Fuels , 1998 .

[6]  Lixia Wei,et al.  Isomeric identification of polycyclic aromatic hydrocarbons formed in combustion with tunable vacuum ultraviolet photoionization , 2006 .

[7]  Jack B. Howard,et al.  Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways , 2000 .

[8]  B. Atakan,et al.  Temperature measurement in fuel-rich non-sooting low-pressure hydrocarbon flames , 2000 .

[9]  Lixia Wei,et al.  Identification of isomeric C5H3 and C5H5 free radicals in flame with tunable synchrotron photoionization , 2006 .

[10]  Takayuki Ito,et al.  Extraction of the suppression effects of oxygenated fuels on soot formation using a detailed chemical kinetic model , 2001 .

[11]  Burak Atakan,et al.  An experimental study of fuel-rich 1,3-pentadiene and acetylene/propene flames , 2003 .

[12]  D. Peterka,et al.  Direct identification of propargyl radical in combustion flames by vacuum ultraviolet photoionization mass spectrometry. , 2006, The Journal of chemical physics.

[13]  M. Frenklach,et al.  A detailed kinetic modeling study of aromatics formation in laminar premixed acetylene and ethylene flames , 1997 .

[14]  William J. Pitz,et al.  A WIDE RANGE MODELING STUDY OF DIMETHYL ETHER OXIDATION , 1997 .

[15]  Ali Ergut,et al.  PAH formation in one-dimensional premixed fuel-rich atmospheric pressure ethylbenzene and ethyl alcohol flames , 2006 .

[16]  P. R. Westmoreland,et al.  Combustion chemistry of enols: possible ethenol precursors in flames. , 2006, The journal of physical chemistry. A.

[17]  C. McEnally,et al.  Experimental study of Fuel decomposition and hydrocarbon growth processes for practical Fuel components in nonpremixed flames : Mtbe and related alkyl ethers , 2004 .

[18]  Lionel Poisson,et al.  Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source , 2005 .

[19]  Lixia Wei,et al.  Modification of photoionization mass spectrometer with synchrotron radiation as ionization source , 2005 .

[20]  E. Ranzi,et al.  Kinetic Modeling of Counterflow Diffusion Flames of Butadiene , 2002 .

[21]  Thomas A. Litzinger,et al.  Reduction of PAH and soot in premixed ethylene–air flames by addition of ethanol , 2006 .

[22]  Thomas A. Litzinger,et al.  Effects of oxygenated additives on aromatic species in fuel-rich, premixed ethane combustion: a modeling study , 2003 .

[23]  P. R. Westmoreland,et al.  Enols Are Common Intermediates in Hydrocarbon Oxidation , 2005, Science.

[24]  Robert L. McCormick,et al.  Combustion of fat and vegetable oil derived fuels in diesel engines , 1998 .

[25]  P. R. Westmoreland,et al.  Identification and chemistry of C4H3 and C4H5 isomers in fuel-rich flames. , 2006, The journal of physical chemistry. A.