Smooth CH3NH3PbI3 from controlled solid–gas reaction for photovoltaic applications

The merits of high power conversion efficiency (PCE) and easy preparation make organic–inorganic perovskite solar cells one of the most promising solar devices. However, PCE is greatly dependent on the morphology of perovskite thin film. Here, we report a solid–gas reaction method to fabricate very smooth CH3NH3PbI3 thin film with high coverage. Through controlling the reaction rate between CH3NH3I and PbI2 by tuning the PbI2 substrate temperature and the evaporation rate of CH3NH3I, we obtain a CH3NH3PbI3 layer with roughness of 7.37 nm. Besides, no post-treatment annealing is needed after film formation using our approach. With about 250 nm perovskite active layer, the solar cells exhibit a PCE of 10.0% with little hysteresis.

[1]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[2]  Nam-Gyu Park,et al.  Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. , 2014, Nature nanotechnology.

[3]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[4]  Mohammad Khaja Nazeeruddin,et al.  Predicting the Open‐Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non‐Radiative Recombination , 2015 .

[5]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[6]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[7]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[8]  G. Chumanov,et al.  Fabrication of Lead Halide Perovskite Film by Controlling Reactivity at Room Temperature in Mixed Solvents , 2014 .

[9]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[10]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[11]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[12]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[13]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[14]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[15]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[16]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[17]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[18]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[19]  Yani Chen,et al.  Non-Thermal Annealing Fabrication of Efficient Planar Perovskite Solar Cells with Inclusion of NH4Cl , 2015 .

[20]  M. Kanatzidis,et al.  Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. , 2014, Journal of the American Chemical Society.

[21]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[22]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[25]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[26]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[27]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[28]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[29]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[30]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[31]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[32]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[33]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[34]  Andrew G. Glen,et al.  APPL , 2001 .

[35]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[36]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[37]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .

[38]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[39]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[40]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[41]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[42]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[43]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .