An Isserlis’ Theorem for Mixed Gaussian Variables: Application to the Auto-Bispectral Density

This work derives a version of Isserlis’ theorem for the specific case of four mixed-Gaussian random variables. The theorem is then used to derive an expression for the auto-bispectral density for quadratically nonlinear systems driven with mixed-Gaussian iid noise.

[1]  Jonathan M. Nichols,et al.  Second-order spectra for quadratic nonlinear systems by Volterra functional series: Analytical description and numerical simulation , 2008 .

[2]  Lorenz Bartosch GENERATION OF COLORED NOISE , 2001 .

[3]  Jean-Marc Le Caillec,et al.  Asymptotic Bias and Variance of Conventional Bispectrum Estimates for 2-D Signals , 2005, Multidimens. Syst. Signal Process..

[4]  Piergiovanni Marzocca,et al.  The trispectrum for Gaussian driven, multiple degree-of-freedom, non-linear structures , 2009 .

[5]  Paul R. White,et al.  BISPECTRAL ANALYSIS OF THE BILINEAR OSCILLATOR WITH APPLICATION TO THE DETECTION OF FATIGUE CRACKS , 1998 .

[6]  Jonathan M. Nichols,et al.  On the use of the auto-bispectral density for detecting quadratic nonlinearity in structural systems , 2008 .

[7]  G. R. Tomlinson,et al.  Nonlinearity in experimental modal analysis , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  The Wick theorem for non-Gaussian distributions and its application for noise filtering of correlated q-Exponentialy distributed random variables , 2004, math-ph/0411020.

[9]  T. Evans,et al.  Wick's theorem for nonsymmetric normal ordered products and contractions , 1998 .

[10]  D. Brillinger An Introduction to Polyspectra , 1965 .

[11]  J. A. Brandon,et al.  Diagnostics of a System with an Interface Nonlinearity using Higher Order Spectral Estimators , 2001 .

[12]  M. Hinich Higher order cumulants and cumulant spectra , 1990, Fifth ASSP Workshop on Spectrum Estimation and Modeling.

[13]  L. Robledo,et al.  Generalized Wick's theorem for multiquasiparticle overlaps as a limit of Gaudin's theorem , 2007, 0707.3365.

[14]  L. Isserlis ON A FORMULA FOR THE PRODUCT-MOMENT COEFFICIENT OF ANY ORDER OF A NORMAL FREQUENCY DISTRIBUTION IN ANY NUMBER OF VARIABLES , 1918 .

[15]  M. Schetzen The Volterra and Wiener Theories of Nonlinear Systems , 1980 .

[16]  G. C. Wick The Evaluation of the Collision Matrix , 1950 .

[17]  Keith Worden,et al.  Nonlinearity in Structural Dynamics , 2019 .

[18]  M.R. Raghuveer,et al.  Bispectrum estimation: A digital signal processing framework , 1987, Proceedings of the IEEE.