Path sets in one-sided symbolic dynamics

Abstract Path sets are spaces of one-sided infinite symbol sequences associated to pointed graphs ( G , v 0 ) , which are edge-labeled directed graphs with a distinguished vertex v 0 . Such sets arise naturally as address labels in geometric fractal constructions and in other contexts. The resulting set of symbol sequences need not be closed under the one-sided shift. This paper establishes basic properties of the structure and symbolic dynamics of path sets, and shows that they are a strict generalization of one-sided sofic shifts.

[1]  K. Lau,et al.  A Generalized Finite Type Condition for Iterated Function Systems , 2007 .

[2]  Mariusz Urbański,et al.  Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets , 2003 .

[3]  Y. Peres,et al.  Hausdorff dimension for fractals invariant under multiplicative integers , 2011, Ergodic Theory and Dynamical Systems.

[4]  Brian H. Marcus,et al.  Minimal presentations for irreducible sofic shifts , 1994, IEEE Trans. Inf. Theory.

[5]  B. Weiss Subshifts of finite type and sofic systems , 1973 .

[6]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[7]  R. Daniel Mauldin,et al.  Hausdorff dimension in graph directed constructions , 1988 .

[8]  Kurt Mahler G-adic Numbers and Roth's Theorem , 1961 .

[9]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[10]  B. Kitchens,et al.  Boundaries of Markov partitions , 1992 .

[11]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[12]  Ternary expansions of powers of 2 , 2005, math/0512006.

[13]  B. Kitchens Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts , 1997 .

[14]  Y. Peres,et al.  Dimensions of some fractals defined via the semigroup generated by 2 and 3 , 2012, 1206.4742.

[15]  J. Conway Regular algebra and finite machines , 1971 .

[16]  Jan C. Willems,et al.  Models for Dynamics , 1989 .

[17]  Hui Rao,et al.  On the open set condition for self-similar fractals , 2005 .

[18]  Jeffrey Shallit,et al.  The ring of k-regular sequences, II , 2003, Theor. Comput. Sci..

[19]  Valérie Berthé,et al.  Dynamical directions in numeration , 2006 .

[20]  S. Akiyama,et al.  Boundary parametrization of self-affine tiles , 2011 .

[21]  Douglas Lind,et al.  An Introduction to Symbolic Dynamics and Coding , 1995 .

[22]  Intersections of multiplicative translates of 3-adic Cantor sets , 2013 .

[23]  D. Lind The entropies of topological Markov shifts and a related class of algebraic integers , 1984, Ergodic Theory and Dynamical Systems.

[24]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..

[25]  Thomas Sudkamp,et al.  Languages and Machines , 1988 .

[26]  Roland Fischer Sofic systems and graphs , 1975 .

[27]  Dominique Perrin,et al.  Symbolic Dynamics and Finite Automata , 1997, Handbook of Formal Languages.

[28]  J. Lagarias,et al.  p-adic path set fractals and arithmetic , 2012, 1210.2478.

[29]  Yang Wang,et al.  Hausdorff Dimension of Self‐Similar Sets with Overlaps , 2001 .

[30]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[31]  Yang Wang,et al.  On the structures of generating iterated function systems of Cantor sets , 2009 .

[32]  Alan Cobham,et al.  On the base-dependence of sets of numbers recognizable by finite automata , 1969, Mathematical systems theory.

[33]  Brian Marcus,et al.  Topological entropy and equivalence of dynamical systems , 1979 .

[34]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1992, Theor. Comput. Sci..

[35]  Jean-Eric Pin,et al.  Infinite words - automata, semigroups, logic and games , 2004, Pure and applied mathematics series.

[36]  Wolfgang Krieger On sofic systems II , 1984 .