Sensing A Paradigm Shift in the Field of Molecular Recognition: From Selective to Differential Receptors.

Molecular recognition has evolved from a science designed to understand biological systems into a much more diverse area of research. While work continues to elucidate "nature's tricks" with respect to intermolecular interactions, much attention has turned to the perspective that molecular recognition, by design, can lead to new technologies. Applications ranging from molecular sensing to information storage and even working molecular machines have been envisioned. This review will highlight a few historical hallmarks of molecular recognition oriented at studying the basic science of intermolecular interactions, but then detail recent advances in molecular recognition aimed towards applications in the field of molecular sensing. Rational design can be used to create synthetic receptors with a good deal of predictability and selectivity, and many signal transduction mechanisms exist for converting these receptors into sensors. This is the first topic discussed. The concept of "differential" or "generalized" sensing is then presented, where one uses an array of sensors that do not necessarily conform to the "lock and key" principle. This approach to sensing is inspired by the mammalian senses of taste and smell, which we briefly describe. To mimic senses of taste and smell, one is naturally led to the use of combinatorial libraries, a direction of research that has seen continued growth over the past few years. We summarize the current state of the art in synthetic combinatorial receptors/sensors, and then predict a future direction that the field of molecular recognition will possibly take. The review is not meant for the specialist, but instead for a general audience. It does not present a highly detailed analysis of each individual topic: synthetic receptors, sensors, olfaction/gustation, and combinatorial receptors/sensors. Instead, this review shows how all these fields complement each other and fit together to create sensing devices. Our conclusion is that specific analyte sensing, differential sensing, and combinatorial chemistry can and will be combined to create sensor arrays, and give the subfield of molecular recognition that uses synthetic systems a bright future in this type of sensing scenario.

[1]  R. Marchelli,et al.  Fluorescent Chemosensor for Organic Guests and Copper(II) Ion Based on Dansyldiethylenetriamine-Modified β-Cyclodextrin , 1997 .

[2]  P. L. Bock,et al.  Synthesis and Study of Crown Ethers with Alkali-Metal-Enhanced Fluorescence: Quest for Flashy Crowns , 1993 .

[3]  H. V. Shurmer,et al.  Integrated tin oxide sensors of low power consumption for use in gas and odour sensing , 1993 .

[4]  Jeremy K. M. Sanders,et al.  Dynamic combinatorial libraries of pseudo-peptide hydrazone macrocycles , 1999 .

[5]  John J. Lavigne,et al.  Neue Tricks für alte Indikatoren: ein colorimetrisches Chemosensor-Ensemble für Tartrat/Malat in Getränken , 1999 .

[6]  Philip S. Lukeman,et al.  Macrolactone-based dynamic combinatorial libraries of cholate monomers bearing recognition functionality , 2000 .

[7]  Takamichi Nakamoto,et al.  Identification capability of odor sensor using quartz-resonator array and neural-network pattern recognition , 1990 .

[8]  K. Niikura,et al.  CHEMOSENSOR ENSEMBLE WITH SELECTIVITY FOR INOSITOL-TRISPHOSPHATE , 1998 .

[9]  Patrizia Grandini,et al.  Anwendung einer Selbstorganisationsstrategie beim Design selektiver Chemosensoren für CuII‐Ionen , 1999 .

[10]  Nathan S. Lewis,et al.  Array-based vapor sensing using chemically sensitive, carbon black-Polymer resistors , 1996 .

[11]  Kenneth N. Raymond,et al.  Supermolecules by Design , 1999 .

[12]  D. Reinhoudt,et al.  Covalent capture of dynamic hydrogen-bonded assemblies , 2000 .

[13]  G. Jung,et al.  Untersuchung der molekularen Erkennung von Aminosäuren durch Cyclopeptide mit reflektometrischer Interferenzspektroskopie , 1998 .

[14]  David N. Reinhoudt,et al.  Neutral anion receptors; synthesis and evaluation as sensing molecules in chemically modified field effect transistors (CHEMFETs) , 1997 .

[15]  Anthony W. Czarnik,et al.  New reagents for the syntheses of fluorescent chemosensors. Anthrylogous ethylene dibromides , 1993 .

[16]  Anilkumer G.Gaonkar,et al.  Characterization of food: emerging methods. , 1995 .

[17]  D R Walt,et al.  Fast temporal response fiber-optic chemical sensors based on the photodeposition of micrometer-scale polymer arrays. , 1997, Analytical chemistry.

[18]  J. Lehn,et al.  Virtual combinatorial libraries: dynamic generation of molecular and supramolecular diversity by self-assembly. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Metzger,et al.  Ein Chemosensor zur Bestimmung von Citrat in Getränken , 1998 .

[20]  N. Nakashima,et al.  Crown ethers as sensory materials in chemical measurements: Interfaces for chemical signal transformation , 1989 .

[21]  G. Schwarzenbach The complexones and their analytical application , 1955 .

[22]  T. James,et al.  SELECTIVE D-GLUCOSAMINE HYDROCHLORIDE FLUORESCENCE SIGNALLING BASED ON AMMONIUM CATION AND DIOL RECOGNITION , 1997 .

[23]  M. Famulok,et al.  Nucleic acid aptamers-from selection in vitro to applications in vivo. , 2000, Accounts of chemical research.

[24]  M. Licchelli,et al.  Fluorescent sensor of imidazole and histidine , 1997 .

[25]  Andreas Hierlemann,et al.  Integrated array sensor for detecting organic solvents , 1995 .

[26]  Angelo Taglietti,et al.  A Versatile Fluorescent System for Sensing of H+, Transition Metals, and Aromatic Carboxylates , 1999 .

[27]  K. Persaud Electronic gas and odour detectors that mimic chemoreception in animals , 1992 .

[28]  T. Getchell Functional properties of vertebrate olfactory receptor neurons. , 1986, Physiological reviews.

[29]  V. Lynch,et al.  Recognition of Anions through NHπ Hydrogen Bonds in a Bicyclic Cyclophane—Selectivity for Nitrate , 1997 .

[30]  M. Wade,et al.  Quantitative fluorescence imaging techniques for the study of organization and signaling mechanisms in cells. , 1994, Methods of biochemical analysis.

[31]  K. Mosbach,et al.  Molecularly imprinted polymers and their use in biomimetic sensors. , 2000, Chemical reviews.

[32]  J. Lehn,et al.  Molecular recognition. Anion cryptates of a macrobicyclic receptor molecule for linear triatomic species , 1978 .

[33]  Alfred A. Schleppnik Structure Recognition as a Peripheral Process in Odor Quality Coding , 1981 .

[34]  D. Reinhoudt,et al.  Chemically modified field effect transistors with nitrite or fluoride selectivity , 1998 .

[35]  Eric V. Anslyn,et al.  Coupling rational design with libraries leads to the production of an ATP selective chemosensor , 2000 .

[36]  François Diederich Cyclophane zur Komplexierung von Neutralmolekülen , 1988 .

[37]  Udo Weimar,et al.  Modular Sensor Systems for Gas Sensing and Odor Monitoring: The MOSES Concept , 1998 .

[38]  R. Liskamp,et al.  Solution phase combinatorial chemistry using cyclotriveratrylene-based tripodal scaffolds , 1999 .

[39]  K. Toko Chapter 16 – Taste Sensor , 1995 .

[40]  A. W. Czarnik,et al.  Peer Reviewed: Combinatorial Chemistry , 1998 .

[41]  S. Shinkai,et al.  Reinvestigation of Calixarene-Based Artificial-Signaling Acetylcholine Receptors Useful in Neutral Aqueous (Water/Methanol) Solution , 1996 .

[42]  J. V. Hatfield,et al.  Towards an integrated electronic nose using conducting polymer sensors , 1994 .

[43]  Gordon C. Osbourn,et al.  Visual-Empirical Region-of-Influence Pattern Recognition Applied to Chemical Microsensor Array Selection and Chemical Analysis , 1998 .

[44]  Guest-Templated Selection and Amplification of a Receptor by Noncovalent Combinatorial Synthesis. , 2000 .

[45]  F. Schmidtchen,et al.  Artificial Organic Host Molecules for Anions. , 1997, Chemical reviews.

[46]  David R. Walt,et al.  Fiber-optic organic vapor sensor , 1991 .

[47]  Thomas E. Mallouk,et al.  Molecular Recognition in Lamellar Solids and Thin Films , 1998 .

[48]  T A Dickinson,et al.  Generating Sensor Diversity through Combinatorial Polymer Synthesis. , 1997, Analytical chemistry.

[49]  J. Kauer,et al.  Rapid analyte recognition in a device based on optical sensors and the olfactory system. , 1996, Analytical chemistry.

[50]  F. Mancin,et al.  Exploiting the Self-Assembly Strategy for the Design of Selective Cu(II) Ion Chemosensors. , 1999, Angewandte Chemie.

[51]  Tony D. James,et al.  Novel Saccharide-Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine , 1995 .

[52]  Masahiko Inouye,et al.  Nondestructive Detection of Acetylcholine in Protic Media: Artificial-Signaling Acetylcholine Receptors , 1994 .

[53]  Nathan S. Lewis,et al.  Array-based vapor sensing using chemically sensitive carbon black-polymer resistors , 1997, Defense, Security, and Sensing.

[54]  G. Jung,et al.  Cyclopeptidbibliotheken als neue chirale Selektoren für die Kapillarelektrophorese , 1996 .

[55]  I. Lauks MICROFABRICATED BIOSENSORS AND MICROANALYTICAL SYSTEMS FOR BLOOD ANALYSIS , 1998 .

[56]  Peter Alfred Payne,et al.  High-frequency measurements of conducting polymers: development of a new technique for sensing volatile chemicals , 1995 .

[57]  K. Burgess,et al.  Solid Phase Syntheses of Oligoureas , 1997 .

[58]  F. Diederich,et al.  Complexation of Neutral Molecules by Cyclophane Hosts , 1988 .

[59]  P. Beer,et al.  Asymmetrical complexation and simultaneous electrochemical recognition of two different group 2 metal cations by a 1,1′-ferrocene-bis(methylene aza-18-crown-6) receptor , 1995 .

[60]  J B Shear,et al.  Characterization of multicomponent monosaccharide solutions using an enzyme-based sensor array. , 2001, Analytical biochemistry.

[61]  P. Weiss Atomic Force Microscopy/Scanning Tunneling Microscopy Edited by Samuel H. Cohen, Mona T. Bray, and Marcia L. Lightbody (U.S. Army Natick Research, Development, and Engineering Center, Natick, MA). Plenum Press: New York. 1994. x + 453 pp. $125.00. ISBN 0-306-44890-4. , 1996 .

[62]  G. Jung,et al.  Multiple Peptide Synthesis Methods and Their Applications. New Synthetic Methods (87) , 1992 .

[63]  Anthony W. Czarnik,et al.  Fluorimetric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling , 1992 .

[64]  D. Schild,et al.  Chemosensory Information Processing , 1990, NATO ASI Series.

[65]  A. Star,et al.  Dioxadiazadecalin/Salen Tautomeric Macrocycles and Complexes: Prototypal Dynamic Combinatorial Virtual Libraries , 2000 .

[66]  A. Hamilton,et al.  Molecular recognition: hydrogen-bonding receptors that function in highly competitive solvents , 1993 .

[67]  Angela M. Scates,et al.  Solid Phase Synthesis of -Peptoids: N-Substituted -Aminopropionic Acid Oligomers , 1998 .

[68]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[69]  John S. Kauer,et al.  Identification of Multiple Analytes Using an Optical Sensor Array and Pattern Recognition Neural Networks , 1997 .

[70]  Toshifumi Takeuchi,et al.  Combinatorial Molecular Imprinting: An Approach to Synthetic Polymer Receptors , 1999 .

[71]  R. Dulbecco Encyclopedia of human biology , 1991 .

[72]  G. Gauglitz,et al.  Investigation of the Molecular Recognition of Amino Acids by Cyclopeptides with Reflectometric Interference Spectroscopy. , 1998, Angewandte Chemie.

[73]  J B Shear,et al.  Development of multianalyte sensor arrays composed of chemically derivatized polymeric microspheres localized in micromachined cavities. , 2001, Journal of the American Chemical Society.

[74]  Jonathan A. Ellman,et al.  Synthesis and Applications of Small Molecule Libraries. , 1996, Chemical reviews.

[75]  Katsuhiko Ariga,et al.  Molecular Recognition at Air−Water and Related Interfaces: Complementary Hydrogen Bonding and Multisite Interaction , 1998 .

[76]  K. R. A. S. Sandanayake,et al.  Saccharidnachweis mit Rezeptoren auf Boronsäurebasis , 1996 .

[77]  Takamichi Nakamoto,et al.  Artificial odor-recognition system using neural network for estimating sensory quantities of blended fragrance , 1996 .

[78]  David R. Liu,et al.  Das Hervorbringen neuer molekularer Funktionen: ein Lehrstück der Natur , 1999 .

[79]  Howard Turner,et al.  Kombinatorische Materialforschung und Katalyse , 1999 .

[80]  Dieter Stoll,et al.  Cyclopeptide Libraries as New Chiral Selectors in Capillary Electrophoresis , 1996 .

[81]  Á. Furka,et al.  General method for rapid synthesis of multicomponent peptide mixtures. , 2009, International journal of peptide and protein research.

[82]  S. Shinkai,et al.  Saccharide Sensing with Molecular Receptors Based on Boronic Acid , 1996 .

[83]  W. C. Still,et al.  Peptidosteroidal Receptors for Opioid Peptides. Sequence-Selective Binding Using a Synthetic Receptor Library , 1994 .

[84]  R. Lal,et al.  A biosensor array based on polyaniline. , 1996, Analytical chemistry.

[85]  P. Schuster,et al.  Taming combinatorial explosion. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Shannon E. Stitzel,et al.  Cross-reactive chemical sensor arrays. , 2000, Chemical reviews.

[87]  Eric V. Anslyn,et al.  Erkennung von Anionen in einem bicyclischen Cyclophan durch Wasserstoffbrückenbindungen zu deren π‐System ‐ unerwartete Selektivität für Nitrat , 1997 .

[88]  A. Hamilton,et al.  Peptide and protein recognition by designed molecules. , 2000, Chemical reviews.

[89]  R A Houghten,et al.  Parallel array and mixture-based synthetic combinatorial chemistry: tools for the next millennium. , 2000, Annual review of pharmacology and toxicology.

[90]  Erika Kress-Rogers,et al.  Handbook of Biosensors and Electronic Noses: Medicine, Food, and the Environment , 1996 .

[91]  Philip A. Gale,et al.  Electrochemical molecular recognition: pathways between complexation and signalling , 1999 .

[92]  Gerd Dürner,et al.  Beschleunigung von Substitutionsreaktionen eines Phosphorsäurediesters durch Bis(guanidinium)‐Verbindungen , 1994 .

[93]  G. Jung,et al.  Methoden der multiplen Peptidsynthese und ihre Anwendungen , 1992 .

[94]  Giuseppe Ferri,et al.  The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors , 1996 .

[95]  A. Hamilton,et al.  CALORIMETRIC INVESTIGATION OF GUANIDINIUM-CARBOXYLATE INTERACTIONS , 1999 .

[96]  D. Reinhoudt,et al.  Novel water-soluble b-cyclodextrin-calix[4]arene couples as fluorescent sensor molecules for the detection of neutral analytes , 1998 .

[97]  J. Rebek Host–guest chemistry of calixarene capsules , 2000 .

[98]  U P Chauhan,et al.  A new method for determining micro quantities of calcium in biological materials. , 1967, Analytical biochemistry.

[99]  David R. Walt,et al.  Making sensors out of disarray: optical sensor microarrays , 1998, Photonics West.

[100]  E. Anslyn,et al.  Teaching Old Indicators New Tricks: A Colorimetric Chemosensing Ensemble for Tartrate/Malate in Beverages. , 1999, Angewandte Chemie.

[101]  S. Asher,et al.  Intelligent Polymerized Crystalline Colloidal Arrays: Novel Chemical Sensor Materials , 1998 .

[102]  L. Fabbrizzi,et al.  Steuerbare Intramolekularbewegungen mit Fluoreszenzeffekt bei einem Metall‐Skorpionatkomplex , 1998 .

[103]  Jungbae Kim,et al.  Enzymatically and Combinatorially Generated Array‐Based Polyphenol Metal Ion Sensor , 2000, Biotechnology progress.

[104]  E. Anslyn,et al.  Solid phase synthesis of oligomeric guanidiniums , 1998 .

[105]  T. Nakamoto,et al.  Perfume and flavour identification by odour-sensing system using quartz-resonator sensor array and neural-network pattern recognition☆ , 1993 .

[106]  M. Licchelli,et al.  Controllable Intramolecular Motions That Generate Fluorescent Signals for a Metal Scorpionate Complex. , 1998, Angewandte Chemie.

[107]  Jandeleit,et al.  Combinatorial Materials Science and Catalysis. , 1999, Angewandte Chemie.

[108]  G L Verdine,et al.  The combinatorial chemistry of nature. , 1996, Nature.

[109]  Anthony W. Czarnik,et al.  Real-Time Assay of Inorganic Pyrophosphatase Using a High-Affinity Chelation-Enhanced Fluorescence Chemosensor , 1994 .

[110]  D. Reinhoudt,et al.  Neutral anion receptors: design and application , 1998 .

[111]  J. Drews Drug discovery: a historical perspective. , 2000, Science.

[112]  Joel White,et al.  Fiber optic array sensors as an architecture for an artificial nose , 1995, European Symposium on Optics for Environmental and Public Safety.

[113]  A. P. Silva,et al.  Fluorescent PET (photoinduced electron transfer) sensors for alkali cations: optimization of sensor action by variation of structure and solvent , 1991 .

[114]  L. Nie,et al.  Behaviour of surface acoustic wave interdigitated array electrode sensor in non-aqueous solution and determination of blood plasma recalcification time. , 1996, Biosensors & bioelectronics.

[115]  Andrew D. Ellington,et al.  Solution-based analysis of multiple analytes by a sensor array: toward the development of an electronic tongue , 1998 .

[116]  K. Sada New ammonium carboxylate host compounds screened by combinatorial chemistry , 1998 .

[117]  J. Hovinen,et al.  Rate constants for the decomposition of a simple alkanediazoate at physiological pH , 1992 .

[118]  Hogan Jc,et al.  Directed combinatorial chemistry. , 1996 .

[119]  Andrew D. Ellington,et al.  Combinatorial methods: aptamers and aptazymes , 1999, Optics East.

[120]  J. Lehn,et al.  Anion receptor molecules : Synthesis of an octaaza-cryptand and structure of its fluoride cryptate , 1989 .

[121]  David R. Walt Fiber Optic Imaging Sensors , 1998 .

[122]  H. Miyake,et al.  Macrocyclic pseudopeptides containing N,N′-ethylene-bridged-dipeptide units: synthesis, binding properties toward metal and organic ammonium cations, and conformations. The first step in designing artificial metalloproteins , 1996 .

[123]  G. Kessler,et al.  AN AUTOMATED PROCEDURE FOR THE SIMULTANEOUS DETERMINATION OF CALCIUM AND PHOSPHORUS. , 1964, Clinical chemistry.

[124]  H. Ikeda,et al.  Fluorescent cyclodextrins for molecule sensing: Fluorescent properties, NMR characterization, and inclusion phenomena of N-dansylleucine-modified cyclodextrins , 1996 .

[125]  Christopher M.A. Brett,et al.  Electrochemistry: Principles, Methods, and Applications , 1993 .

[126]  F. Diederich,et al.  Proton NMR investigations of host-guest complexation between a macrocyclic host of the cyclophane type and aromatic guests in aqueous solution , 1984 .

[127]  G. Newkome Suprasupermolecular chemistry: the chemistry within the dendrimer , 1998 .

[128]  E. Anslyn,et al.  A Chemosensor for Citrate in Beverages. , 1998, Angewandte Chemie.