Solitary Wave Benchmarks in Magma Dynamics

We present a model problem for benchmarking codes that investigate magma migration in the Earth’s interior. This system retains the essential features of more sophisticated models, yet has the advantage of possessing solitary wave solutions. The existence of such exact solutions to the nonlinear problem make it an excellent benchmark problem for combinations of solver algorithms. In this work, we explore a novel algorithm for computing high quality approximations of the solitary waves in 1-, 2- and 3 dimensions and use them to benchmark a semi-Lagrangian Crank-Nicolson scheme for a finite element discretization of the time dependent problem.

[1]  Gideon Simpson,et al.  Asymptotic Stability of Ascending Solitary Magma Waves , 2008, SIAM J. Math. Anal..

[2]  Kenneth L. Bowers,et al.  Sinc methods for quadrature and differential equations , 1987 .

[3]  Catherine Sulem,et al.  Tracing complex singularities with spectral methods , 1983 .

[4]  Gideon Simpson,et al.  On a Hamiltonian PDE arising in Magma Dynamics , 2008, 0801.0555.

[5]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[6]  L. R. Lundin,et al.  A cardinal function method of solution of the equation Δ , 1980 .

[7]  John Whitehead,et al.  The Korteweg‐deVries equation from laboratory conduit and magma migration equations , 1986 .

[8]  Marc Spiegelman,et al.  Flow in deformable porous media. Part 1 Simple analysis , 1993, Journal of Fluid Mechanics.

[9]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[10]  Matthew G. Knepley,et al.  Numerical simulation of geodynamic processes with the Portable Extensible Toolkit for Scientific Computation , 2007 .

[11]  Marc Spiegelman,et al.  Flow in deformable porous media. Part 2 Numerical analysis – the relationship between shock waves and solitary waves , 1993, Journal of Fluid Mechanics.

[12]  Dmitry Pelinovsky,et al.  Convergence of Petviashvili's Iteration Method for Numerical Approximation of Stationary Solutions of Nonlinear Wave Equations , 2004, SIAM J. Numer. Anal..

[13]  Jeremy Louis Marzuola,et al.  A System of ODEs for a Perturbation of a Minimal Mass Soliton , 2009, J. Nonlinear Sci..

[14]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[15]  Kamel Al-Khaled,et al.  Sinc numerical solution for solitons and solitary waves , 2001 .

[16]  Vladimir E. Zakharov,et al.  Three-dimensional solitons , 1974 .

[17]  Mohamed El-Gamel,et al.  On the Galerkin and collocation methods for two-point boundary value problems using sinc bases , 2008, Comput. Math. Appl..

[18]  Victor Barcilon,et al.  Solitary waves in magma dynamics , 1989, Journal of Fluid Mechanics.

[19]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[20]  Nicola Bellomo,et al.  Nonlinear models and problems in applied sciences from differential quadrature to generalized collocation methods , 1997 .

[21]  Taras I. Lakoba,et al.  A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity , 2007, J. Comput. Phys..

[22]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[23]  David J. Stevenson,et al.  Magma ascent by porous flow , 1986 .

[24]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[25]  Chris H. Wiggins,et al.  Magma migration and magmatic solitary waves in 3-D , 1995 .

[26]  Richard F. Katz,et al.  A semi‐Lagrangian Crank‐Nicolson algorithm for the numerical solution of advection‐diffusion problems , 2006 .

[27]  F. Stenger Summary of Sinc numerical methods , 2000 .

[28]  Victor Barcilon,et al.  Nonlinear waves in compacting media , 1986, Journal of Fluid Mechanics.

[29]  Gideon Simpson,et al.  Degenerate dispersive equations arising in the study of magma dynamics , 2006, nlin/0607040.

[30]  M. Ablowitz,et al.  Spectral renormalization method for computing self-localized solutions to nonlinear systems. , 2005, Optics letters.