Single mode photonic crystal vertical cavity surface emitting lasers with modulation bandwidth > 13 GHz at low current density

Single mode photonic crystal vertical cavity surface emitting lasers with a modulation bandwidth exceeding 13 GHz are achieved at current density as low as 3.7 kA/cm2 by separating the current and lasing apertures.

[1]  Bernardo Kucinski 47 , 2014, Tao te Ching.

[2]  P. Moser,et al.  99 fJ/(bit$\cdot$ km) Energy to Data-Distance Ratio at 17 Gb/s Across 1 km of Multimode Optical Fiber With 850-nm Single-Mode VCSELs , 2012, IEEE Photonics Technology Letters.

[3]  Clint Schow,et al.  Get On The Optical Bus , 2010, IEEE Spectrum.

[4]  K. Choquette,et al.  25-Gb/s Direct Modulation of Implant Confined Holey Vertical-Cavity Surface-Emitting Lasers , 2010, IEEE Photonics Technology Letters.

[5]  David Schneider,et al.  Wireless networking dashes in a new direction , 2010, IEEE Spectrum.

[6]  Kent D. Choquette,et al.  Single transverse mode control of VCSEL by photonic crystal and trench patterning , 2010 .

[7]  Chen Chen,et al.  High-Speed Modulation of Index-Guided Implant-Confined Vertical-Cavity Surface-Emitting Lasers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  M. Tan,et al.  Mode Control in Photonic Crystal Vertical-Cavity Surface-Emitting Lasers and Coherent Arrays , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  C. Headley,et al.  Diffraction-Limited Fundamental Mode Operation of Core-Pumped Very-Large-Mode-Area Er Fiber Amplifiers , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  M. Tan,et al.  Photonic Crystal Vertical Cavity Lasers With Wavelength-Independent Single-Mode Behavior , 2008, IEEE Photonics Technology Letters.

[11]  D. Vacar,et al.  Manufacturable Photonic Crystal Single-Mode and Fluidic Vertical-Cavity Surface-Emitting Lasers , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Kent D. Choquette,et al.  Photonic-crystal vertical-cavity surface-emitting lasers , 2008, SPIE Photonics Europe.

[13]  P. Leisher,et al.  Parametric Study of Proton-Implanted Photonic Crystal Vertical-Cavity Surface-Emitting Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[14]  Chen Chen,et al.  High Modulation Bandwidth Implant-Confined Photonic Crystal Vertical-Cavity Surface-Emitting Lasers , 2007, IEEE Photonics Technology Letters.

[15]  K. Panajotov,et al.  Optimal Parameters of Photonic-Crystal Vertical-Cavity Surface-Emitting Diode Lasers , 2007, Journal of Lightwave Technology.

[16]  K. Panajotov,et al.  Single mode condition and modes discrimination in photonic-crystal 1.3 mum AlInGaAs/InP VCSEL. , 2007, Optics express.

[17]  P. Leisher,et al.  Single-mode 1.3-/spl mu/m photonic crystal vertical-cavity surface-emitting laser , 2006, IEEE Photonics Technology Letters.

[18]  P. Leisher,et al.  Loss and index guiding in single-mode holey vertical-cavity surface-emitting lasers , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[19]  Kent D. Choquette,et al.  Single mode photonic crystal vertical cavity lasers , 2006 .

[20]  Richard S. Quimby,et al.  Photonics and Lasers: An Introduction , 2006 .

[21]  P. Leisher,et al.  Proton implanted single mode holey vertical-cavity surface-emitting lasers , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[22]  Kent D. Choquette,et al.  Progress in Photonic Crystal Vertical Cavity Lasers , 2005, IEICE Trans. Electron..

[23]  Kent D. Choquette,et al.  Single fundamental mode photonic crystal vertical cavity laser with improved output power , 2005 .

[24]  Toshihiko Baba,et al.  High-power single-mode vertical-cavity surface-emitting lasers with triangular holey structure , 2004 .

[25]  Jesper Berggren,et al.  Fabrication and performance of 1.3-μm vertical-cavity surface-emitting lasers with InGaAs quantum well active regions grown on GaAs substrates , 2004, SPIE Photonics Europe.

[26]  Kent D. Choquette,et al.  Two-dimensional photonic crystal confined vertical-cavity surface-emitting lasers , 2003 .

[27]  A. Siegman,et al.  Propagating modes in gain-guided optical fibers. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Kent D. Choquette,et al.  Etching depth dependence of the effective refractive index in two-dimensional photonic-crystal-patterned vertical-cavity surface-emitting laser structures , 2003 .

[29]  Yong-Hee Lee,et al.  Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers , 2002 .

[30]  R. Baets,et al.  Comparison of optical VCSEL models on the simulation of oxide-confined devices , 2001 .

[31]  A. Allerman,et al.  Single-transverse-mode vertical-cavity lasers under continuous and pulsed operation , 2001, IEEE Photonics Technology Letters.

[32]  M. Kicherer,et al.  Improving single-mode VCSEL performance by introducing a long monolithic cavity , 2000, IEEE Photonics Technology Letters.

[33]  A. Larsson,et al.  Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief , 1999, IEEE Photonics Technology Letters.

[34]  Rainer Michalzik,et al.  4.8 mW singlemode oxide confined top-surface emitting vertical-cavity laser diodes , 1997 .

[35]  G. R. Hadley,et al.  Effective index model for vertical-cavity surface-emitting lasers. , 1995, Optics letters.

[36]  K. Geib,et al.  Low threshold voltage vertical-cavity lasers fabricated by selective oxidation , 1994 .

[37]  K. Kojima,et al.  Transverse mode control of vertical-cavity top-surface-emitting lasers , 1993, IEEE Photonics Technology Letters.

[38]  C. W. Jurgensen,et al.  Microscopic uniformity in plasma etching , 1992 .

[39]  N. Dutta,et al.  Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors , 1991 .