Design of subwavelength corrugated metal waveguides for slow waves at terahertz frequencies.

A subwavelength corrugated metal waveguide is studied and designed to slow down the light at terahertz frequencies. The waveguide consists of two parallel thin metal slabs with periodic corrugations on their inner boundaries. Compared with structures based on engineered surface plasmons, the proposed structure has smaller group velocity dispersion and lower propagation loss. The origin of the slow wave is also explained.

[1]  Daniel M. Mittleman,et al.  Propagation effects in apertureless near-field optical antennas , 2004 .

[2]  A. Maradudin,et al.  PHOTONIC BAND STRUCTURES OF TWO-DIMENSIONAL SYSTEMS FABRICATED FROM RODS OF A CUBIC POLAR CRYSTAL , 1997 .

[3]  Daniel R. Grischkowsky,et al.  Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers , 2000 .

[4]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[5]  R. G. Carter Travelling-wave Tubes , 2018, Nature.

[6]  R. Mendis,et al.  THz interconnect with low-loss and low-group velocity dispersion , 2001, IEEE Microwave and Wireless Components Letters.

[7]  Ikmo Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, IMS 2002.

[8]  G. Goubau Surface Waves and Their Application to Transmission Lines , 1950 .

[9]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[10]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[11]  I. Park,et al.  Terahertz pulse propagation in plastic photonic crystal fibers , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[12]  D. Grischkowsky,et al.  Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. , 1999, Optics letters.

[13]  Adam L. Bingham,et al.  THz parallel plate photonic waveguides , 2005 .

[14]  S. Coleman,et al.  A THz transverse electromagnetic mode two-dimensional interconnect layer incorporating quasi-optics , 2003 .

[15]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[16]  T. Krauss,et al.  Real-space observation of ultraslow light in photonic crystal waveguides. , 2005, Physical review letters.

[17]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[18]  Jiangquan Zhang,et al.  Waveguide terahertz time-domain spectroscopy of nanometer water layers. , 2004, Optics letters.

[19]  A Säynätjoki,et al.  Dispersion engineering of photonic crystal waveguides with ring-shaped holes. , 2007, Optics express.

[20]  Yoshinori Tanaka,et al.  Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes , 2003 .

[21]  D. Grischkowsky,et al.  Undistorted guided-wave propagation of subpicosecond terahertz pulses. , 2001, Optics letters.

[22]  Elmer Estacio,et al.  Low-loss single-mode terahertz waveguiding using Cytop , 2006 .

[23]  R S Elliottt,et al.  On the Theory of Corrugated Plane Surfaces , 2022 .

[24]  Z. Jiang,et al.  Near-field terahertz imaging with a dynamic aperture. , 2000, Optics letters.

[25]  D. Mittleman,et al.  Chemical recognition of gases and gas mixtures with terahertz waves. , 1996, Optics letters.

[26]  Wavelength scale terahertz two-dimensional photonic crystal waveguides. , 2004, Optics express.

[27]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[28]  D. Grischkowsky,et al.  THz Sommerfeld wave propagation on a single metal wire , 2005 .

[29]  Daniel R. Grischkowsky,et al.  Plastic ribbon THz waveguides , 2000 .

[30]  Wei Jiang,et al.  80-micron interaction length silicon photonic crystal waveguide modulator , 2005 .

[31]  Walter Rotman,et al.  A Study of Single-Surface Corrugated Guides , 1951, Proceedings of the IRE.