Tail risk of contagious diseases

[1]  Claire Donnat,et al.  Modeling the heterogeneity in COVID-19's reproductive number and its impact on predictive scenarios , 2020, Journal of Applied Statistics.

[2]  C. Whittaker,et al.  Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand , 2020 .

[3]  Michael Runcieman Visualizing the History of Pandemics , 2020 .

[4]  Yaneer Bar-Yam,et al.  Systemic Risk of Pandemic via Novel Pathogens – Coronavirus: A Note , 2020 .

[5]  N. Taleb,et al.  The Decline of Violent Conflicts: What Do the Data Really Say? , 2016 .

[6]  Pasquale Cirillo,et al.  Expected shortfall estimation for apparently infinite-mean models of operational risk , 2015 .

[7]  N. Taleb,et al.  On the Statistical Properties and Tail Risk of Violent Conflicts , 2015, 1505.04722.

[8]  Taylor B. Seybolt,et al.  Counting civilian casualties : an introduction to recording and estimating nonmilitary deaths in conflict , 2013 .

[9]  Pasquale Cirillo,et al.  Are your data really Pareto distributed , 2013, 1306.0100.

[10]  A. Fasanella,et al.  Plague Epidemic in the Kingdom of Naples, 1656–1658 , 2012, Emerging infectious diseases.

[11]  Kees Klein Goldewijk,et al.  Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1 , 2010 .

[12]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[13]  Paul Embrechts,et al.  Infinite-mean models and the LDA for operational risk , 2006 .

[14]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[15]  .. M.Arshad,et al.  Anderson Darling and Modified Anderson Darling Tests for Generalized Pareto Distribution , 2003 .

[16]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[17]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[18]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .