Review of status developments of high-efficiency crystalline silicon solar cells

In order to further improve cell efficiency and reduce cost in achieving grid parity, a large number of PV manufacturing companies, universities and research institutes have been devoted to a variety of low-cost and high-efficiency crystalline Si solar cells. In this article, the cell structures, characteristics and efficiency progresses of several types of high-efficiency crystalline Si solar cells that have been in small scale production or are promising in mass production are presented, including passivated emitter rear cell, tunnel oxide passivated contact solar cell, interdigitated back contact cell, heterojunction with intrinsic thin-layer cell, and heterojunction solar cells with interdigitated back contacts. Both the industrialization status and future development trend of high-efficiency crystalline silicon solar cells are also pinpointed.

[1]  K. Yoshikawa,et al.  Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology , 2017 .

[2]  R. Brendel,et al.  Emitter saturation current densities of 22 fA/cm2 applied to industrial PERC solar cells approaching 22% conversion efficiency , 2017 .

[3]  P. Altermatt,et al.  22.61 % Efficient Fully Screen Printed PERC Solar Cell , 2017 .

[4]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[5]  H. Sun,et al.  21.63% industrial screen‐printed multicrystalline Si solar cell , 2017 .

[6]  J. Werner,et al.  23.2% laser processed back contact solar cell: fabrication, characterization and modeling , 2017 .

[7]  A. Rohatgi,et al.  Modeling the potential of screen printed front junction CZ silicon solar cell with tunnel oxide passivated back contact , 2017 .

[8]  Christopher Kranz,et al.  PERC+: industrial PERC solar cells with rear Al grid enabling bifaciality and reduced Al paste consumption , 2016 .

[9]  Miro Zeman,et al.  Simplified process for high efficiency, self-aligned IBC c-Si solar cells combining ion implantation and epitaxial growth: Design and fabrication , 2016 .

[10]  M. Zeman,et al.  IBC c-Si solar cells based on ion-implanted poly-silicon passivating contacts , 2016 .

[11]  Wanwu Guo,et al.  Development of High-efficiency Industrial p-type Multi-crystalline PERC Solar Cells with Efficiency Greater Than 21% , 2016 .

[12]  Wenzhong Shen,et al.  Versatile strategies for improving the performance of diamond wire sawn mc-Si solar cells , 2016 .

[13]  Jan Schmidt,et al.  Industrial Silicon Solar Cells Applying the Passivated Emitter and Rear Cell (PERC) Concept—A Review , 2016, IEEE Journal of Photovoltaics.

[14]  Yifeng Chen,et al.  A large-volume manufacturing of multi-crystalline silicon solar cells with 18.8% efficiency incorporating practical advanced technologies , 2016 .

[15]  A. Rohatgi,et al.  Carrier selective tunnel oxide passivated contact enabling 21.4% efficient large-area N-type silicon solar cells , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[16]  P. Altermatt,et al.  22.13% Efficient industrial p-type mono PERC solar cell , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[17]  G. Bunea,et al.  Silicon solar cells with total area efficiency above 25 % , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[18]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[19]  Christopher Kranz,et al.  Analysis of Local Aluminum Rear Contacts of Bifacial PERC+ Solar Cells , 2016, IEEE Journal of Photovoltaics.

[20]  Pierre J. Verlinden,et al.  Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell , 2016 .

[21]  D. Adachi,et al.  Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency , 2015 .

[22]  S. Glunz,et al.  The Irresistible Charm of a Simple Current Flow Pattern – 25% with a Solar Cell Featuring a Full-Area Back Contact , 2015 .

[23]  Xiaodong Su,et al.  Next-generation multi-crystalline silicon solar cells: Diamond-wire sawing, nano-texture and high efficiency , 2015 .

[24]  M. Werner,et al.  Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers grown by photo-oxidation or wet-chemical oxidation in ozonized water , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[25]  S. Glunz,et al.  Tunnel oxide passivated contacts as an alternative to partial rear contacts , 2014 .

[26]  K. Bothe,et al.  Fine-Line Printed 5 Busbar PERC Solar Cells with Conversion Efficiencies Beyond 21% , 2014 .

[27]  R. Preu,et al.  Progress in Laser-Based Foil Metallization for Industrial PERC Solar Cells , 2014 .

[28]  M. Shen,et al.  18.45%‐Efficient Multi‐Crystalline Silicon Solar Cells with Novel Nanoscale Pseudo‐Pyramid Texture , 2014 .

[29]  Kyotaro Nakamura,et al.  Development of Heterojunction Back Contact Si Solar Cells , 2014, IEEE Journal of Photovoltaics.

[30]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[31]  David D. Smith,et al.  Toward the Practical Limits of Silicon Solar Cells , 2014, IEEE Journal of Photovoltaics.

[32]  R. Müller,et al.  Ion implantation into amorphous Si layers to form carrier‐selective contacts for Si solar cells , 2014 .

[33]  R. Brendel,et al.  21.2%‐efficient fineline‐printed PERC solar cell with 5 busbar front grid , 2014 .

[34]  Shaoqing Xiao,et al.  High-Efficiency Silicon Solar Cells—Materials and Devices Physics , 2014 .

[35]  K. Ostrikov,et al.  Low-temperature plasma processing for Si photovoltaics , 2014 .

[36]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[37]  R. Brendel,et al.  High-Efficiency RISE-IBC Solar Cells: Influence of Rear Side-Passivation on pn-Junction Meander Recombination , 2013 .

[38]  J. S. Ponraj,et al.  Review on Atomic Layer Deposition and Applications of Oxide Thin Films , 2013 .

[39]  M. Ritala,et al.  In Situ Studies on Reaction Mechanisms in Atomic Layer Deposition , 2013 .

[40]  Donghwan Kim,et al.  Effects of annealing on ion-implanted Si for interdigitated back contact solar cell , 2012 .

[41]  S. Peters,et al.  High-Efficiency Industrial-Type PERC Solar Cells Applying ICP AlOx as Rear Passivation Layer , 2012 .

[42]  S. Huang,et al.  Si surface passivation by SiOx : H films deposited by a low-frequency ICP for solar cell applications , 2012 .

[43]  S. Huang,et al.  Amorphous/crystalline silicon heterojunction solar cells via remote inductively coupled plasma processing , 2012 .

[44]  F. Granek,et al.  Back‐contacted back‐junction n‐type silicon solar cells featuring an insulating thin film for decoupling charge carrier collection and metallization geometry , 2012 .

[45]  M. Taguchi,et al.  The Approaches for High Efficiency HITTM Solar Cell with Very Thin (<100 µm) Silicon Wafer over 23% , 2011 .

[46]  S. Xu,et al.  Plasma-aided fabrication in Si-based photovoltaic applications: an overview , 2011 .

[47]  R. Preu,et al.  A laser based process for the formation of a local back surface field for n-type silicon solar cells , 2011 .

[48]  S. Huang,et al.  On conductivity type conversion of p-type silicon exposed to a low-frequency inductively coupled plasma of Ar + H2 , 2010 .

[49]  Wmm Erwin Kessels,et al.  Silicon surface passivation by ultrathin Al2O3 films synthesized by thermal and plasma atomic layer deposition , 2010 .

[50]  M. Taguchi,et al.  High-Efficiency HIT Solar Cell on Thin (<100 μm) Silicon Wafer , 2009 .

[51]  R. Preu,et al.  Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide , 2009 .

[52]  K. Ostrikov,et al.  Self-organized vertically aligned single-crystal silicon nanostructures with controlled shape and aspect ratio by reactive plasma etching , 2009 .

[53]  M. Green The path to 25% silicon solar cell efficiency: History of silicon cell evolution , 2009 .

[54]  Jeffrey E. Cotter,et al.  Optical and electrical properties of laser texturing for high‐efficiency solar cells , 2006 .

[55]  Michael Keidar,et al.  Microscopic ion fluxes in plasma-aided nanofabrication of ordered carbon nanotip structures , 2005 .

[56]  Makoto Tanaka,et al.  Obtaining a higher Voc in HIT cells , 2005 .

[57]  P. Würfel Physics of solar cells : from principles to new concepts , 2005 .

[58]  Ralf Preu,et al.  Laser‐fired rear contacts for crystalline silicon solar cells , 2002 .

[59]  M. Green,et al.  Efficient silicon light-emitting diodes , 2001, Nature.

[60]  M. Taguchi,et al.  HITTM cells—high-efficiency crystalline Si cells with novel structure , 2000 .

[61]  C. Pitt,et al.  Al2O3 thin films by plasma-enhanced chemical vapour deposition using trimethyl-amine alane (TMAA) as the Al precursor , 1997 .

[62]  T. Sawada,et al.  High-efficiency a-Si/c-Si heterojunction solar cell , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[63]  M. Green,et al.  Characterization of 23-percent efficient silicon solar cells , 1990 .

[64]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[65]  S. Glunz,et al.  Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics , 2014 .

[66]  J. F. Lerat,et al.  Boron Laser Doping through High Quality Al2O3 Passivation Layer for Localized B-BSF PERL Solar Cells , 2013 .

[67]  Niels Posthuma,et al.  Development and Integration of a High Efficiency Baseline Leading to 23% IBC Cells , 2012 .

[68]  S. Gall,et al.  Laser Doping Strategies Using SiN:P and SiN:B Dielectric Layers for Profile Engineering in High Efficiency Solar Cell , 2012 .

[69]  Atul Gupta,et al.  High efficiency selective emitter cells using patterned ion implantation , 2011 .

[70]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[71]  Makoto Konagai,et al.  High Quality Aluminum Oxide Passivation Layer for Crystalline Silicon Solar Cells Deposited by Parallel-Plate Plasma-Enhanced Chemical Vapor Deposition , 2009 .

[72]  J. Nelson The physics of solar cells , 2003 .