NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols

[1]  R. Pieters,et al.  Biology and treatment of acute lymphoblastic leukemia. , 2010, Hematology/oncology clinics of North America.

[2]  M. Muckenthaler,et al.  The Favorable Effect of Activating NOTCH1 Receptor Mutations On Long Term Outcome in T-ALL Is Treatment Related and Can Be Separated From NOTCH Pathway Activation by FBXW7 Loss of Function. , 2009 .

[3]  F. Speleman,et al.  Prognostic Significance of NOTCH1 and FBXW7 Mutations in Childhood T-Cell Acute Lymphoblastic Leukemia (T-ALL): Results From the EORTC Children Leukemia Group. , 2009 .

[4]  W. Kamps,et al.  Dexamethasone-based therapy for childhood acute lymphoblastic leukaemia: results of the prospective Dutch Childhood Oncology Group (DCOG) protocol ALL-9 (1997-2004). , 2009, The Lancet. Oncology.

[5]  C. Bloomfield,et al.  Prognostic implications of NOTCH1 and FBXW7 mutations in adult acute T-lymphoblastic leukemia , 2009, Haematologica.

[6]  A. Ferrando,et al.  Prognostic implications of NOTCH1 and FBXW7 mutations in adults with T-cell acute lymphoblastic leukemia treated on the MRC UKALLXII/ECOG E2993 protocol. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  Iannis Aifantis,et al.  CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia , 2009, Nature.

[8]  H. Dombret,et al.  NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. , 2009, Blood.

[9]  Y. Hayashi,et al.  FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non‐Hodgkin lymphoma , 2009, British journal of haematology.

[10]  A. Gedman,et al.  The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T- cell acute lymphoblastic leukemia: A report from the Children's Oncology Group , 2009, Leukemia.

[11]  Robin Foà,et al.  T-cell acute lymphoblastic leukemia , 2009, Haematologica.

[12]  Shinsuke Suzuki,et al.  A second NOTCH1 chromosome rearrangement: t(9;14)(q34.3;q11.2) in T-cell neoplasia , 2009, Leukemia.

[13]  J. Aster,et al.  Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL. , 2008, Blood.

[14]  R. Pieters,et al.  Molecular‐genetic insights in paediatric T‐cell acute lymphoblastic leukaemia , 2008, British journal of haematology.

[15]  J. Aster,et al.  Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. , 2008, The Journal of clinical investigation.

[16]  A. Ferrando,et al.  NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. , 2008, Blood.

[17]  L. Foroni,et al.  Notch-1 Mutations Are Secondary Events in Some Patients with T-Cell Acute Lymphoblastic Leukemia , 2007, Clinical Cancer Research.

[18]  Andrew P. Stubbs,et al.  The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. , 2007, Blood.

[19]  Rob Pieters,et al.  FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors , 2007, The Journal of experimental medicine.

[20]  A. Ferrando,et al.  The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia , 2007, The Journal of experimental medicine.

[21]  U. Lendahl,et al.  The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. , 2007, Cancer research.

[22]  Gabriel S. Eichler,et al.  Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. , 2007, Cancer research.

[23]  Adam A. Margolin,et al.  NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth , 2006, Proceedings of the National Academy of Sciences.

[24]  Charles Lee,et al.  The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. , 2006, Blood.

[25]  H. J. Kim,et al.  Mutational analysis of the hCDC4 gene in gastric carcinomas. , 2006, European journal of cancer.

[26]  M. Muckenthaler,et al.  Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. , 2006, Blood.

[27]  J. Aster,et al.  c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. , 2006, Genes & development.

[28]  Jiong Hu,et al.  NOTCH1 Mutations in T-Cell Acute Lymphoblastic Leukemia: Prognostic Significance and Implication in Multifactorial Leukemogenesis , 2006, Clinical Cancer Research.

[29]  A. Look,et al.  Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia , 2006, Nature Reviews Cancer.

[30]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[31]  F. Speleman,et al.  Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. , 2004, Blood.

[32]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage , 2003 .

[33]  S. Armstrong,et al.  Differential mRNA expression of Ara-C-metabolizing enzymes explains Ara-C sensitivity in MLL gene-rearranged infant acute lymphoblastic leukemia. , 2003, Blood.

[34]  E. Petricoin,et al.  Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front , 2001, Oncogene.

[35]  C. Li,et al.  Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  W. Kamps,et al.  Intensive treatment of children with acute lymphoblastic leukemia according to ALL-BFM-86 without cranial radiotherapy: results of Dutch Childhood Leukemia Study Group Protocol ALL-7 (1988-1991). , 1999, Blood.

[37]  A Orfao,et al.  Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). , 1995, Leukemia.

[38]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[39]  Y. Benjamini,et al.  More powerful procedures for multiple significance testing. , 1990, Statistics in medicine.

[40]  M. D. Den Boer,et al.  New genetic abnormalities and treatment response in acute lymphoblastic leukemia. , 2009, Seminars in hematology.

[41]  Iannis Aifantis,et al.  γ-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia , 2009, Nature Medicine.

[42]  J. Meijerink,et al.  Prognostic significance of molecular-cytogenetic abnormalities in pediatric T-ALL is not explained by immunophenotypic differences , 2008, Leukemia.

[43]  M. Eguchi,et al.  NOTCH1 mutation can be an early, prenatal genetic event in T-ALL. , 2008, Blood.

[44]  W. Kamps,et al.  The outcome of molecular-cytogenetic subgroups in pediatric T-cell acute lymphoblastic leukemia: a retrospective study of patients treated according to DCOG or COALL protocols. , 2006, Haematologica.

[45]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. , 2003, Blood.

[46]  J. Hermans,et al.  BFM-oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients: results of DCLSG protocol ALL-8 (1991–1996) , 2002, Leukemia.

[47]  G. Paolucci,et al.  [Treatment of acute lymphoblastic leukemia]. , 1971, Minerva pediatrica.