Circuit-Switched Broadcasting in Torus Networks

In this paper we present three broadcast algorithms and lower bounds on the three main components of the broadcast time for 2-dimensional torus networks (wrap-around meshes) that use synchronous circuit-switched routing. The first algorithm is based on a recursive tiling of a torus and is optimal in terms of both phases and intermediate switch settings when the start-up time to initiate message transmissions is the dominant cost. It is the first broadcast algorithm to match the lower bound of log/sub 5/ N on number of phases (where N is the number of nodes). The second and third algorithms are hybrids which combine circuit-switching with the pipelining and arc-disjoint spanning trees techniques that are commonly used to speed up store-and-forward routing. When the propagation time of messages through the network is significant, our hybrid algorithms achieve close to optimal performance in terms of phases, intermediate switch settings, and total transmission time. They are the first algorithms to achieve this performance in terms of all three parameters simultaneously.

[1]  Arthur L. Liestman,et al.  A survey of gossiping and broadcasting in communication networks , 1988, Networks.

[2]  Charles L. Seitz,et al.  Concurrent architectures , 1990 .

[3]  Shekhar Y. Borkar,et al.  iWarp: an integrated solution to high-speed parallel computing , 1988, Proceedings. SUPERCOMPUTING '88.

[4]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[5]  S. Lennart Johnsson,et al.  Optimum Broadcasting and Personalized Communication in Hypercubes , 1989, IEEE Trans. Computers.

[6]  Xiaola Lin,et al.  Deadlock-free multicast wormhole routing in multicomputer networks , 1991, ISCA '91.

[7]  Charles L. Seitz,et al.  Concurrent VLSI Architectures , 1984, IEEE Transactions on Computers.

[8]  S. R. Seidel,et al.  Broadcasting on linear arrays and meshes , 1993 .

[9]  Xiaola Lin,et al.  Performance Evaluation of Multicast Wormhole Routing in 2D-Mesh Multicomputers , 1991, ICPP.

[10]  Daniel H. Linder,et al.  An Adaptive and Fault Tolerant Wormhole Routing Strategy for k-Ary n-Cubes , 1994, IEEE Trans. Computers.

[11]  Robert A. van de Geijn,et al.  Optimal Broadcasting in Mesh-Connected Architectures , 1991 .

[12]  Leonard Kleinrock,et al.  Virtual Cut-Through: A New Computer Communication Switching Technique , 1979, Comput. Networks.

[13]  Pierre Fraigniaud,et al.  Communications intensives dans les architectures a memoire distribuee et algorithmes paralleles pour la recherche de racines de polynomes , 1990 .

[14]  Marjorie Senechal Tiling the torus and other space forms , 1988, Discret. Comput. Geom..

[15]  Robert A. van de Geijn,et al.  Two Dimensional Basic Linear Algebra Communication Subprograms , 1993, PPSC.

[16]  Hiroaki Ishihata,et al.  Low-latency message communication support for the AP1000 , 1992, ISCA '92.

[17]  H. T. Kung,et al.  Supporting systolic and memory communication in iWarp , 1990, ISCA '90.

[18]  William J. Dally,et al.  Deadlock-Free Message Routing in Multiprocessor Interconnection Networks , 1987, IEEE Transactions on Computers.

[19]  Shahid H. Bokhari Communication overhead on the Intel iPSC-860 hypercube , 1990 .

[20]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[21]  Quentin F. Stout,et al.  Intensive Hypercube Communication. Prearranged Communication in Link-Bound Machines , 1990, J. Parallel Distributed Comput..

[22]  Yousef Saad,et al.  Data communication in parallel architectures , 1989, Parallel Comput..

[23]  S. F. Nugent,et al.  The iPSC/2 direct-connect communications technology , 1988, C3P.

[24]  Pierre Fraigniaud,et al.  Methods and problems of communication in usual networks , 1994, Discret. Appl. Math..

[25]  William J. Dally,et al.  Performance Analysis of k-Ary n-Cube Interconnection Networks , 1987, IEEE Trans. Computers.