The physics and applications of superconducting metamaterials

We summarize progress in the development and application of metamaterial structures utilizing superconducting elements. After a brief review of the salient features of superconductivity, the advantages of superconducting metamaterials over their normal metal counterparts are discussed. We then present the unique electromagnetic properties of superconductors and discuss their use in both proposed and demonstrated metamaterial structures. Finally we discuss novel applications enabled by superconducting metamaterials, and then mention a few possible directions for future research.

[1]  Bonn,et al.  Evidence for rapid suppression of quasiparticle scattering below Tc in YBa2Cu3O7- delta. , 1992, Physical review letters.

[2]  Nikos Lazarides,et al.  rf superconducting quantum interference device metamaterials , 2007 .

[3]  Takahashi,et al.  Electromagnetic phenomena related to a low-frequency plasma in cuprate superconductors. , 1994, Physical review. B, Condensed matter.

[4]  Shi-ning Zhu,et al.  Tunable photonic crystals with superconductor constituents , 2002 .

[5]  M. Lancaster,et al.  Building Left-Handed Transmission Lines Using High-Temperature Superconductors , 2007 .

[6]  Single superconducting split-ring resonator electrodynamics , 2005, cond-mat/0512515.

[7]  Sailing He Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications. By Christophe Caloz and Tatsuo Itoh. , 2007 .

[8]  A. Tsiatmas,et al.  Fano resonances in high-Tc superconducting metamaterial , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[9]  S. Khorasani,et al.  Photonic band structure of isotropic and anisotropic Abrikosov lattices in superconductors , 2007 .

[10]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[11]  S. Anlage,et al.  Laser scanning microscopy of HTS films and devices (Review Article) , 2005, cond-mat/0512582.

[12]  Richard,et al.  Observation of propagating plasma modes in a thin superconducting film. , 1994, Physical review letters.

[13]  H. Hosono,et al.  To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report , 2009, 0906.2045.

[14]  Shiqun Li,et al.  Quantum left-handed metamaterial from superconducting quantum-interference devices , 2005 .

[15]  Y. Lozovik,et al.  Superconducting photonic crystals : Numerical calculations of the band structure , 2006 .

[16]  D. Larkman,et al.  Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. , 2001, Science.

[17]  N. Lazarides,et al.  rf SQUID metamaterials , 2007 .

[18]  J. Pendry,et al.  Metamaterials at zero frequency , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Xiao-ping Liu,et al.  Tunable negative refractions in two-dimensional photonic crystals with superconductor constituents , 2005 .

[20]  J. E. Zimmerman,et al.  QUANTUM STATES AND TRANSITIONS IN WEAKLY CONNECTED SUPERCONDUCTING RINGS. , 1967 .

[21]  N I Zheludev,et al.  Temperature control of Fano resonances and transmission in superconducting metamaterials. , 2010, Optics express.

[22]  Richard W. Ziolkowski,et al.  Application of double negative materials to increase the power radiated by electrically small antennas , 2003 .

[23]  A. Poddubny,et al.  Low-frequency spectroscopy of superconducting photonic crystals , 2007, 0709.0779.

[24]  V. Talanov,et al.  Measurement of the absolute penetration depth and surface resistance of superconductors and normal metals with the variable spacing parallel plate resonator , 2000 .

[25]  Optical Spectroscopy of Plasmons and Excitons in Cuprate Superconductors , 2004, cond-mat/0410473.

[26]  J. Pendry,et al.  A d.c. magnetic metamaterial. , 2008, Nature materials.

[27]  K. Yoshino,et al.  Properties of Abrikosov lattices as photonic crystals , 2004 .

[28]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[29]  Shiqun Li,et al.  Stable and bistable SQUID metamaterials , 2008 .

[30]  Carles Navau,et al.  Magnetic properties of a dc metamaterial consisting of parallel square superconducting thin plates , 2009 .

[31]  Miniaturized superconducting metamaterials for radio frequencies , 2010, 1004.3985.

[32]  Chien-Jang Wu,et al.  THz transmittance in one-dimensional superconducting nanomaterial-dielectric superlattice , 2009 .

[33]  Boris Chesca,et al.  Radio Frequency SQUIDs and their Applications , 2001 .

[34]  Isabelle Huynen,et al.  Multiple resonances in arrays of spiral resonators designed for magnetic resonance imaging , 2008 .

[35]  M. Beasley,et al.  A current controlled variable delay superconducting transmission line , 1989 .

[36]  R. Mansour,et al.  Nonlinear Josephson left-handed transmission lines , 2007 .

[37]  Clem,et al.  Unified theory of effects of vortex pinning and flux creep upon the rf surface impedance of type-II superconductors. , 1991, Physical Review Letters.

[38]  Can Xu,et al.  Temperature dependent complex photonic band structures in two-dimensional photonic crystals composed of high-temperature superconductors. , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  C. Kurter Superconductivity takes the stage in the field of metamaterials , 2010 .

[40]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[41]  T. Nurgaliev Modeling of the microwave characteristics of layered superconductor/ferromagnetic structures , 2008 .

[42]  Daniel E. Oates,et al.  MICROWAVE POWER DEPENDENCE OF YBA2CU3O7 THIN-FILM JOSEPHSON EDGE JUNCTIONS , 1996 .

[43]  Y. Genenko,et al.  The effect of a superconducting surface layer on the optical properties of a dielectric photonic composite , 2008 .

[44]  Yang-Tung Huang,et al.  A temperature modulation photonic crystal Mach-Zehnder interferometer composed of copper oxide high-temperature superconductor , 2007 .

[45]  Federico Capasso,et al.  Orientation-dependent Casimir force arising from highly anisotropic crystals: Application to Bi 2 Sr 2 Ca Cu 2 O 8 + δ , 2008, 0809.3193.

[46]  Yi Wang,et al.  High-Temperature Superconducting Coplanar Left-Handed Transmission Lines and Resonators , 2006, IEEE Transactions on Applied Superconductivity.

[47]  High Temperature Superconducting Radio Frequency Coils for NMR Spectroscopy and Magnetic Resonance Imaging , 2000, cond-mat/0004346.

[48]  Alan M. Portis,et al.  Electrodynamics Of High Temperature Superconductors , 1993 .

[49]  H. Padamsee,et al.  RF superconductivity for accelerators , 1998 .

[50]  O. Vendik,et al.  Equivalent parameters of a Josephson junction in a microwave SQUID structure , 1999 .

[51]  Liangbin Hu,et al.  Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites , 2002 .

[52]  K. Delin,et al.  Foundations of Applied Superconductivity , 1991 .

[53]  J. Ketterson,et al.  Superconductivity: List of mathematical and physical symbols , 1999 .

[54]  H. Salehi,et al.  Analysis and design of Superconducting left-handed transmission lines , 2005, IEEE Transactions on Applied Superconductivity.

[55]  Franco Nori,et al.  Layered superconductors as negative-refractive-index metamaterials , 2009, 0907.3564.

[56]  Franco Nori,et al.  Quantum metamaterials: Electromagnetic waves in Josephson qubit lines , 2009 .

[57]  A DC magnetic metamaterial , 2007 .

[58]  G. C. Hilton,et al.  Amplification and squeezing of quantum noise with a tunable Josephson metamaterial , 2008, 0806.0659.

[59]  A. Maimistov,et al.  Nonlinear response of a thin metamaterial film containing Josephson junctions , 2009, 0908.0103.

[60]  Robert B. Hammond,et al.  Superconducting microwave filter systems for cellular telephone base stations , 2004, Proceedings of the IEEE.

[61]  N. Engheta,et al.  An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability , 2002, IEEE Antennas and Wireless Propagation Letters.

[62]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[63]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[64]  C. Ooi,et al.  Polariton gap in a superconductor–dielectric superlattice , 1999 .

[65]  J. Hajnal,et al.  Sub-wavelength imaging at radio frequency , 2006 .

[67]  C. Jooss,et al.  Magneto-optical studies of current distributions in high-Tc superconductors , 2002 .

[68]  C. Ooi,et al.  Photonic band gap in a superconductor-dielectric superlattice , 2000 .

[69]  B. Dabrowski,et al.  Negative refraction in ferromagnet-superconductor superlattices. , 2005, Physical review letters.

[70]  S. Anlage,et al.  Tunability of Superconducting Metamaterials , 2006, IEEE Transactions on Applied Superconductivity.

[71]  A. Aly Metallic and Superconducting Photonic Crystal , 2008 .

[72]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[73]  Japan,et al.  Review of the superconducting properties of MgB2 , 2001 .

[74]  K. Yoshino,et al.  Tunable photonic band schemes in two-dimensional photonic crystals composed of copper oxide high-temperature superconductors , 2003 .

[75]  Manuel Castellanos-Beltran,et al.  Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator , 2007 .