Robust structure and morphology parameters for CdS nanoparticles by combining small-angle X-ray scattering and atomic pair distribution function data in a complex modeling framework
暂无分享,去创建一个
Simon J. L. Billinge | Xiaogang Peng | Christopher L. Farrow | P. Juhás | Xiaogang Peng | S. Billinge | Chenyang Shi | Chenyang Shi | Pavol Juhas | C. Farrow
[1] James R. McBride,et al. Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. , 2013, Physical chemistry chemical physics : PCCP.
[2] Simon J. L. Billinge,et al. PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .
[3] M. Balasubramanian,et al. Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis. , 2012, Angewandte Chemie.
[4] Z. H. Melgarejo,et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. , 2012, Physical review letters.
[5] Simon J. L. Billinge,et al. PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.
[6] B. Gilbert. Finite size effects on the real-space pair distribution function of nanoparticles , 2008 .
[7] C. L. Farrow,et al. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.
[8] Simon J L Billinge,et al. The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.
[9] T. Fuller,et al. Evidence for anomalous bond softening and disorder below 2 nm diameter in carbon supported platinum nanoparticles from the temperature dependent peak width of the atomic pair distribution function , 2013 .
[10] B. Phillips,et al. Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate , 2010 .
[11] S. Billinge,et al. Data Requirements for the Reliable Use of Atomic Pair Distribution Functions in Amorphous Pharmaceutical Fingerprinting , 2011, Pharmaceutical Research.
[12] T. Proffen,et al. Entropically Stabilized Local Dipole Formation in Lead Chalcogenides , 2010, Science.
[13] Takeshi Egami,et al. Underneath the Bragg Peaks , 2003 .
[14] A. Cheetham,et al. Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3 and BaTiO3. , 2008, Physical review letters.
[15] A. P. Hammersley,et al. Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .
[16] Ram Seshadri,et al. Real-space investigation of structural changes at the metal-insulator transition in VO2. , 2010, Physical review letters.
[17] Matthew J Cliffe,et al. Structure determination of disordered materials from diffraction data. , 2009, Physical review letters.
[18] W. Punch,et al. Ab initio determination of solid-state nanostructure , 2006, Nature.
[19] J. Banfield,et al. Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.
[20] S J L Billinge,et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.
[21] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[22] Feng Huang,et al. Nanoparticles: Strained and Stiff , 2004, Science.
[23] A. Soper,et al. Structure and properties of an amorphous metal-organic framework. , 2010, Physical review letters.
[24] Simon J. L. Billinge,et al. Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .
[25] K. Chapman,et al. Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. , 2012, Journal of the American Chemical Society.
[26] Qun Hui,et al. RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.
[27] Xiaogang Peng,et al. Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.
[28] B. Borie. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .
[29] R. P. Hoo,et al. Simultaneous small- and wide-angle scattering at high X-ray energies. , 2010, Journal of synchrotron radiation.
[30] J. Hanson,et al. Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.
[31] Simon J L Billinge,et al. Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. , 2008, Acta crystallographica. Section A, Foundations of crystallography.
[32] H. Krutter,et al. FOURIER ANALYSIS OF X‐RAY PATTERNS OF VITREOUS SiO2 AND B2O3* , 1936 .
[33] A. Alivisatos,et al. Ferroelectric order in individual nanometre-scale crystals. , 2012, Nature materials.
[34] M. Schoonen,et al. The Structure of Ferrihydrite, a Nanocrystalline Material , 2007, Science.
[35] I. Levin,et al. Simultaneous reverse Monte Carlo refinements of local structures in perovskite solid solutions using EXAFS and the total scattering pair-distribution function , 2008 .