Robust structure and morphology parameters for CdS nanoparticles by combining small-angle X-ray scattering and atomic pair distribution function data in a complex modeling framework

In this work, the concept of complex modeling (CM) is tested by carrying out a co-refinement of the atomic pair distribution function and small-angle X-ray scattering data from CdS nanoparticles. It is shown that, compared with either single technique alone, the CM approach yields a more accurate and robust structural insight into the atomic structure and morphology of nanoparticles. This work opens the door for the application of CM to a wider class of nanomaterials and for the incorporation of additional experimental and theoretical techniques into these studies.

[1]  James R. McBride,et al.  Confirmation of disordered structure of ultrasmall CdSe nanoparticles from X-ray atomic pair distribution function analysis. , 2013, Physical chemistry chemical physics : PCCP.

[2]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[3]  M. Balasubramanian,et al.  Structural and mechanistic revelations on an iron conversion reaction from pair distribution function analysis. , 2012, Angewandte Chemie.

[4]  Z. H. Melgarejo,et al.  Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. , 2012, Physical review letters.

[5]  Simon J. L. Billinge,et al.  PDFgetX3: a rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions , 2012, 1211.7126.

[6]  B. Gilbert Finite size effects on the real-space pair distribution function of nanoparticles , 2008 .

[7]  C. L. Farrow,et al.  Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis , 2007, 0704.1288.

[8]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[9]  T. Fuller,et al.  Evidence for anomalous bond softening and disorder below 2 nm diameter in carbon supported platinum nanoparticles from the temperature dependent peak width of the atomic pair distribution function , 2013 .

[10]  B. Phillips,et al.  Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate , 2010 .

[11]  S. Billinge,et al.  Data Requirements for the Reliable Use of Atomic Pair Distribution Functions in Amorphous Pharmaceutical Fingerprinting , 2011, Pharmaceutical Research.

[12]  T. Proffen,et al.  Entropically Stabilized Local Dipole Formation in Lead Chalcogenides , 2010, Science.

[13]  Takeshi Egami,et al.  Underneath the Bragg Peaks , 2003 .

[14]  A. Cheetham,et al.  Local structural origins of the distinct electronic properties of Nb-substituted SrTiO3 and BaTiO3. , 2008, Physical review letters.

[15]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[16]  Ram Seshadri,et al.  Real-space investigation of structural changes at the metal-insulator transition in VO2. , 2010, Physical review letters.

[17]  Matthew J Cliffe,et al.  Structure determination of disordered materials from diffraction data. , 2009, Physical review letters.

[18]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[19]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[20]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[23]  A. Soper,et al.  Structure and properties of an amorphous metal-organic framework. , 2010, Physical review letters.

[24]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[25]  K. Chapman,et al.  Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. , 2012, Journal of the American Chemical Society.

[26]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  Xiaogang Peng,et al.  Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. , 2002, Angewandte Chemie.

[28]  B. Borie X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .

[29]  R. P. Hoo,et al.  Simultaneous small- and wide-angle scattering at high X-ray energies. , 2010, Journal of synchrotron radiation.

[30]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[31]  Simon J L Billinge,et al.  Relationship between the atomic pair distribution function and small-angle scattering: implications for modeling of nanoparticles. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[32]  H. Krutter,et al.  FOURIER ANALYSIS OF X‐RAY PATTERNS OF VITREOUS SiO2 AND B2O3* , 1936 .

[33]  A. Alivisatos,et al.  Ferroelectric order in individual nanometre-scale crystals. , 2012, Nature materials.

[34]  M. Schoonen,et al.  The Structure of Ferrihydrite, a Nanocrystalline Material , 2007, Science.

[35]  I. Levin,et al.  Simultaneous reverse Monte Carlo refinements of local structures in perovskite solid solutions using EXAFS and the total scattering pair-distribution function , 2008 .