Low-Complexity Polytopic Invariant Sets for Linear Systems Subject to Norm-Bounded Uncertainty

We propose a novel algorithm to compute low-complexity polytopic robust control invariant (RCI) sets, along with the corresponding state-feedback gain, for linear discrete-time systems subject to norm-bounded uncertainty, additive disturbances and state/input constraints. Using a slack variable approach, we propose new results to transform the original nonlinear problem into a convex/LMI problem whilst introducing only minor conservatism in the formulation. Through numerical examples, we illustrate that the proposed algorithm can yield improved maximal/minimal volume RCI set approximations in comparison with the schemes given in the literature.

[1]  Imad M. Jaimoukha,et al.  Robust Positively Invariant Sets for Linear Systems subject to model-uncertainty and disturbances , 2012 .

[2]  B. Kouvaritakis,et al.  Nonlinear model predictive control with polytopic invariant sets , 2002 .

[3]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[4]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[5]  J. Hennet,et al.  Feedback control of linear discrete-time systems under state and control constraints , 1988 .

[6]  Elena De Santis,et al.  Controlled invariance and feedback laws , 2001, IEEE Trans. Autom. Control..

[7]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[8]  J. Hennet,et al.  (A, B)-Invariant Polyhedral Sets of Linear Discrete-Time Systems , 1999 .

[9]  F. Blanchini Constrained control for uncertain linear systems , 1991 .

[10]  Pierre Apkarian,et al.  Continuous-time analysis, eigenstructure assignment, and H2 synthesis with enhanced linear matrix inequalities (LMI) characterizations , 2001, IEEE Trans. Autom. Control..

[11]  David Q. Mayne,et al.  Optimized robust control invariance for linear discrete-time systems: Theoretical foundations , 2007, Autom..

[12]  Bart De Moor,et al.  On efficient computation of low-complexity controlled invariant sets for uncertain linear systems , 2010, Int. J. Control.

[13]  Imad M. Jaimoukha,et al.  On the gap between the quadratic integer programming problem and its semidefinite relaxation , 2006, Math. Program..

[14]  Imad M. Jaimoukha,et al.  Causal state-feedback parameterizations in robust model predictive control , 2013, Autom..

[15]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[16]  Imad M. Jaimoukha,et al.  Robust feedback model predictive control of constrained uncertain systems , 2013 .

[17]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.