Chemically amplified photoresist as a medium for quantitative 3-D high spatial resolution autoradiography

UNLABELLED 18F-(E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β- (4'-methyl-phenyl)nortropane (18F-FE-PE2I) is a novel radioligand for dopamine transporter (DAT) PET. As compared with 11C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (11C-PE2I), 18F-FE-PE2I shows faster kinetics and more favorable metabolism, with less production of a radiometabolite with intermediate lipophilicity (M1), which-in the case of 11C-PE2I-has been shown to enter the rat brain. In this study, we compared DAT quantification with 11C-PE2I and 18F-FE-PE2I in nonhuman primates, using kinetic and graphical analysis with the input function of both the parent and the radiometabolite, to assess the potential contribution of the radiometabolite. METHODS Three rhesus monkeys were examined with 11C-PE2I and 18F-FE-PE2I using the HRRT system. Arterial input functions of the parent and radiometabolite M1 were measured. Kinetic and graphical analyses were applied using either the parent input (methods 1 and 3) or the parent plus radiometabolite input (methods 2 and 4). Outcome measures were distribution volumes (VT and VND), specific-to-nondisplaceable tissue radioactivity ratio at equilibrium (BPND; parent input), and specific-to-nondisplaceable tissue radioactivity ratio at equilibrium in the presence of metabolites (RT; parent plus radiometabolite input). RESULTS 11C-PE2I showed higher distribution volumes than 18F-FE-PE2I calculated with methods 1 and 3 (striatal VT, ∼300%; VND in cerebellum, ∼30%). With methods 2 and 4, VT in the striatum was approximately 60% higher in the case of 11C-PE2I, whereas no difference in VND was found in the cerebellum. For each radioligand, BPND estimated with methods 1 and 3 tended to be higher than RT estimated with methods 2 and 4. However, the bias of BPND, compared with RT, was much larger for 11C-PE2I (40%-60% in the caudate and putamen) than for 18F-FE-PE2I (<10% in the caudate and putamen). CONCLUSION The direct comparison between the radioligands confirmed that 18F-FE-PE2I shows faster kinetics and more favorable metabolism than 11C-PE2I. The kinetic and graphical analyses with the input function of the parent and radiometabolite showed that the bias in BPND was much lower for 18F-FE-PE2I than for 11C-PE2I and suggested that the lower production of the radiometabolite M1 would make 18F-FE-PE2I more suitable for the DAT quantification. Further studies in humans are necessary to confirm these findings.

[1]  J. Mazziotta,et al.  Positron emission tomography and autoradiography: Principles and applications for the brain and heart , 1985 .

[2]  Claude Comtat,et al.  Assessment of 11C-PE2I Binding to the Neuronal Dopamine Transporter in Humans with the High-Spatial-Resolution PET Scanner HRRT , 2007, Journal of Nuclear Medicine.

[3]  Christer Halldin,et al.  Quantitative analyses of regional [11C]PE2I binding to the dopamine transporter in the human brain: a PET study , 2006, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  B. Gulyás,et al.  In vitro autoradiography and in vivo evaluation in cynomolgus monkey of [18F]FE‐PE2I, a new dopamine transporter PET radioligand , 2009, Synapse.

[5]  Ronald Boellaard,et al.  Optimization algorithms and weighting factors for analysis of dynamic PET studies , 2006, Physics in medicine and biology.

[6]  Christine DeLorenzo,et al.  Modeling Considerations for In Vivo Quantification of the Dopamine Transporter using [11C]PE2I and Positron Emission Tomography , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  J. Seidel,et al.  Identification and regional distribution in rat brain of radiometabolites of the dopamine transporter PET radioligand [11C]PE2I , 2007, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  Christer Halldin,et al.  Measurement of Striatal and Extrastriatal Dopamine Transporter Binding with High-Resolution PET and [11C]PE2I: Quantitative Modeling and Test—Retest Reproducibility , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  Christer Halldin,et al.  Radioligand Disposition and Metabolism — Key Information in Early Drug Development , 1995 .

[10]  Robert B. Innis,et al.  Kinetic and equilibrium analyses of [123I]epidepride binding to striatal and extrastriatal dopamine D2 receptors , 1999 .

[11]  J. Seibyl,et al.  Graphical analysis and simplified quantification of striatal and extrastriatal dopamine D2 receptor binding with [123I]epidepride SPECT. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  C. Halldin,et al.  Synthesis, radiolabeling and preliminary in vivo evaluation of [18F]FE-PE2I, a new probe for the dopamine transporter. , 2009, Bioorganic & medicinal chemistry letters.

[13]  David J. Schlyer,et al.  Graphical Analysis of Reversible Radioligand Binding from Time—Activity Measurements Applied to [N-11C-Methyl]-(−)-Cocaine PET Studies in Human Subjects , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[14]  G. Gebhart,et al.  Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. , 1997, ILAR journal.

[15]  Christer Halldin,et al.  Advancement in PET quantification using 3D-OP-OSEM point spread function reconstruction with the HRRT , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  Yuan-Hwa Chou,et al.  [11C]PE2I: a highly selective radioligand for PET examination of the dopamine transporter in monkey and human brain , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[17]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[18]  Christer Halldin,et al.  PET examination of [11C]NNC 687 and [11C]NNC 756 as new radioligands for the D1-dopamine receptor , 2005, Psychopharmacology.

[19]  R. P. Maguire,et al.  Consensus Nomenclature for in vivo Imaging of Reversibly Binding Radioligands , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[20]  D. Comar,et al.  PET for drug development and evaluation , 1995 .

[21]  D. Lewis,et al.  Tyrosine Hydroxylase- and Dopamine Transporter-Immunoreactive Axons in the Primate Cerebellum , 2000, Neuropsychopharmacology.