Combined forced and free laminar convection in the entrance region of an inclined isothermal tube

An analysis is made of the combined forced and free convection for laminar flow in the entrance region of isothermal, inclined tubes. This involves the numerical calculation of the developing flow with significant buoyancy effects. Three independent parameters are introduced: the Prandtl number Pr, a modified Rayleigh number Ra*, and {Omega}, a parameter that measures the relative importance of free and forced convection. The inclination angle does not appear explicitly in the formulation. Numerical results are obtained for Pr = 0.7, 5, and 10, and representative values of Ra* and {Omega}. The axial development of the velocity profiles, temperature field, local pressure gradient, and the Nusselt number are presented. These results reveal that the buoyancy effects have a considerable influence on the fluid flow and heat transfer characteristics of the development flow. A comparison of the numerical results with the available experimental data is also presented.