Rainfall patterns in a major wheat-growing region of Australia

Rainfall is an important variable in the wheat production areas of Australia. This analysis examines, firstly, the pattern of rainfall over 2.3 million ha of a high-quality wheat-producing region, and secondly, develops regression equations for rainfall prediction over this region. Most of the variation in rainfall pattern across the region is accounted for by differences in October-to-March (summer) rainfall and in April-to-September (winter) rainfall. The summer rainfall differences account for over two thirds of the variation. Based on these two rainfall periods, a partitioning of the study area reveals five distinct regions. The second part of the analysis uses multiple regression to provide a set of equations for rainfall prediction at any location in the region, for a number of rainfall periods. These equations use altitude, longitude and latitude as predictors. Nearly all of the equations explain between 80% and 94% of the variation in rainfall. Differences between regions are accounted for in the analysis, making the equations widely applicable. The validity of the mean rainfall equations was tested on three further sites: the mean prediction error was 6.9%. This approach may be applicable where large land masses with similar geographical features occur.

[1]  John B. Willett,et al.  Another Cautionary Note about R 2: Its Use in Weighted Least-Squares Regression Analysis , 1988 .

[2]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[3]  E. Linacre,et al.  The Australian climatic environment , 1977 .

[4]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[5]  S. Waring,et al.  Fertility investigations on the black earth wheatlands of the darling downs, queensland , 1960 .

[6]  Wojtek J. Krzanowski,et al.  Principles of multivariate analysis : a user's perspective. oxford , 1988 .

[7]  Alex B. McBratney,et al.  Comparison of several spatial prediction methods for soil pH , 1987 .

[8]  A. Millington,et al.  The wheat industry in Australia , 1956 .

[9]  J. Perry,et al.  Multiple-comparison procedures: a dissenting view. , 1986, Journal of economic entomology.

[10]  G. B. Wetherill,et al.  The Present State of Multiple Comparison Methods , 1971 .

[11]  E. A Fitzpatrick,et al.  A model for simulating soil water regime in alternating fallow-crop systems , 1969 .

[12]  R. H. Myers Classical and modern regression with applications , 1986 .

[13]  Regionalization and spatial estimation of Ethiopian mean annual rainfall , 1990 .

[14]  J. Dumanski,et al.  Implications of spatial averaging weather and soil moisture data for broad scale modelling activities , 1992 .

[15]  Trevor H. Booth,et al.  Estimating monthly mean valuesof daily total solar radiation for Australia , 1984 .

[16]  J. Marley,et al.  Winter cereal production on the Darling Downs dash an 11 year study of fallowing practices , 1989 .

[17]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[18]  M. Richman,et al.  Rotation of principal components , 1986 .

[19]  E. Cornish The Influence of Rainfall on the Yield of Wheat in South Australia , 1950 .

[20]  A. J. Collins,et al.  Introduction to Multivariate Analysis , 1982 .

[21]  S. Waring,et al.  Fertility investigations on the black earth wheatlands of the darling downs, queensland ii. Moisture and evapotranspiration in relation to the wheat crop , 1958 .

[22]  Michael F. Hutchinson,et al.  A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to the Hunter Valley, New South Wales , 1983 .