Darwin-Vlasov simulations of magnetised plasmas

We present a new Vlasov code for collisionless plasmas in the nonrelativistic regime. A Darwin approximation is used for suppressing electromagnetic vacuum modes. The spatial integration is based on an extension of the flux-conservative scheme, introduced by Filbet et al. [F. Filbet, E. Sonnendrucker, P. Bertrand, Conservative numerical schemes for the Vlasov equation, J. Comput. Phys. 172 (2001) 166]. Performance and accuracy is demonstrated by comparing it to a standard finite differences scheme for two test cases, including a Harris sheet magnetic reconnection scenario. This comparison suggests that the presented scheme is a promising alternative to finite difference schemes.

[1]  O. Buneman,et al.  Time-Reversible Difference Procedures , 1967 .

[2]  Manfred Scholer,et al.  Onset of collisionless magnetic reconnection in thin current sheets : Three-dimensional particle simulations , 2003 .

[3]  P. Pritchett,et al.  Geospace Environment Modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code , 2001 .

[4]  T. Wiegelmann,et al.  Evolution of magnetic helicity in the course of kinetic magnetic reconnection , 2001 .

[5]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[6]  Michael Hesse,et al.  Particle‐in‐cell simulations of three‐dimensional collisionless magnetic reconnection , 2001 .

[7]  A. Bhattacharjee,et al.  Scaling of collisionless forced reconnection. , 2001, Physical review letters.

[8]  L. Rudakov,et al.  Hall magnetic reconnection rate. , 2004, Physical review letters.

[9]  J. Büchner,et al.  Kinetic instabilities of thin current sheets: Results of two-and-one-half-dimensional Vlasov code simulations , 2003 .

[10]  James Drake,et al.  Three‐dimensional particle simulations of collisionless magnetic reconnection , 2001 .

[11]  James F. Drake,et al.  Alfvénic collisionless magnetic reconnection and the Hall term , 2001 .

[12]  E. G. Harris On a plasma sheath separating regions of oppositely directed magnetic field , 1962 .

[13]  C. Nielson,et al.  Particle-code models in the nonradiative limit , 1976 .

[14]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[15]  H. Karimabadi,et al.  Collisionless reconnection in two-dimensional magnetotail equilibria , 1991 .

[16]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[17]  Paolo Ricci,et al.  GEM reconnection challenge: Implicit kinetic simulations with the physical mass ratio , 2002 .

[18]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[19]  Ronald C. Davidson,et al.  Electromagnetic (Darwin) model for three-dimensional perturbative particle simulation of high intensity beams , 2001, PACS2001. Proceedings of the 2001 Particle Accelerator Conference (Cat. No.01CH37268).

[20]  R. Sydora Nonlinear dynamics of small-scale magnetic islands in high temperature plasmas , 2001 .

[21]  T. Arber,et al.  A Critical Comparison of Eulerian-Grid-Based Vlasov Solvers , 2002 .

[22]  C. Cavazzoni,et al.  A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .

[23]  R. C. Harding,et al.  SOLUTION OF VLASOV'S EQUATION BY TRANSFORM METHODS. , 1970 .

[24]  Paolo Ricci,et al.  A simplified implicit maxwell solver , 2002 .

[25]  P. Pritchett Collisionless magnetic reconnection in a three‐dimensional open system , 2001 .

[26]  R.-F. Lottermoser,et al.  Undriven magnetic reconnection in magnetohydrodynamics and Hall magnetohydrodynamics , 1997 .

[27]  James Drake,et al.  Two-fluid theory of collisionless magnetic reconnection , 1997 .

[28]  Ritoku Horiuchi,et al.  Three-dimensional particle simulation of plasma instabilities and collisionless reconnection in a current sheet , 1999 .

[29]  Jörg Büchner,et al.  Sausage mode instability of thin current sheets as a cause of magnetospheric substorms , 1999 .

[30]  James F. Drake,et al.  The role of electron dissipation on the rate of collisionless magnetic reconnection , 1998 .