Repair of Retinal Degeneration following Ex Vivo Minicircle DNA Gene Therapy and Transplantation of Corrected Photoreceptor Progenitors.

[1]  J. B. Demb,et al.  Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas , 2018, Nature.

[2]  Albrecht Rothermel,et al.  Interim Results of a Multicenter Trial with the New Electronic Subretinal Implant Alpha AMS in 15 Patients Blind from Inherited Retinal Degenerations , 2017, Front. Neurosci..

[3]  Takashi Daimon,et al.  Autologous Induced Stem‐Cell–Derived Retinal Cells for Macular Degeneration: Brief Report , 2017, The New England journal of medicine.

[4]  Genshiro A. Sunagawa,et al.  iPSC-Derived Retina Transplants Improve Vision in rd1 End-Stage Retinal-Degeneration Mice , 2017, Stem cell reports.

[5]  R. MacLaren,et al.  Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion , 2016, Nature Communications.

[6]  Oliver Borsch,et al.  Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange , 2016, Nature Communications.

[7]  E. L. West,et al.  Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors , 2016, Nature Communications.

[8]  R. MacLaren,et al.  Function of human pluripotent stem cell-derived photoreceptor progenitors in blind mice , 2016, Scientific Reports.

[9]  K. Gregory-Evans,et al.  An ex vivo gene therapy approach in X-linked retinoschisis , 2016, Molecular vision.

[10]  P. Carmeliet,et al.  Stem Cell-Derived Photoreceptor Transplants Differentially Integrate Into Mouse Models of Cone-Rod Dystrophy. , 2016, Investigative ophthalmology & visual science.

[11]  P. Charbel Issa,et al.  Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex-vivo , 2016, Gene Therapy.

[12]  A. Bassuk,et al.  Precision Medicine: Genetic Repair of Retinitis Pigmentosa in Patient-Derived Stem Cells , 2016, Scientific Reports.

[13]  R. MacLaren,et al.  CNTF Gene Therapy Confers Lifelong Neuroprotection in a Mouse Model of Human Retinitis Pigmentosa. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[14]  Fani Sousa,et al.  Minicircle DNA vectors for gene therapy: advances and applications , 2015, Expert opinion on biological therapy.

[15]  U. Wolfrum,et al.  Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells , 2014, Human molecular genetics.

[16]  S. Tsang,et al.  Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[17]  H. Okano,et al.  The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa , 2014, Molecular Brain.

[18]  E. Stone,et al.  CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype , 2014, Gene Therapy.

[19]  R. MacLaren,et al.  Cell fusion following photoreceptor transplantation into the non-degenerate retina , 2014 .

[20]  E. Stone,et al.  Photoreceptor cells with profound structural deficits can support useful vision in mice. , 2014, Investigative ophthalmology & visual science.

[21]  M. Ader,et al.  Subretinal transplantation of MACS purified photoreceptor precursor cells into the adult mouse retina. , 2014, Journal of visualized experiments : JoVE.

[22]  Angelika Braun,et al.  Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS , 2013, Proceedings of the Royal Society B: Biological Sciences.

[23]  R. MacLaren,et al.  Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. , 2013, Current gene therapy.

[24]  R. MacLaren,et al.  Clinical applications of retinal gene therapy , 2013, Progress in Retinal and Eye Research.

[25]  Peter Charbel Issa,et al.  Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation , 2013, Proceedings of the National Academy of Sciences.

[26]  E. L. West,et al.  Repair of the degenerate retina by photoreceptor transplantation , 2012, Proceedings of the National Academy of Sciences.

[27]  E. L. West,et al.  Defining the Integration Capacity of Embryonic Stem Cell‐Derived Photoreceptor Precursors , 2012, Stem cells.

[28]  E. L. West,et al.  Restoration of vision after transplantation of photoreceptors , 2012, Nature.

[29]  F. Delori,et al.  Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. , 2012, Investigative ophthalmology & visual science.

[30]  D. Corbeil,et al.  Increased integration of transplanted CD73-positive photoreceptor precursors into adult mouse retina. , 2011, Investigative ophthalmology & visual science.

[31]  K. Gregory-Evans,et al.  Pharmacological Enhancement of ex vivo Gene Therapy Neuroprotection in a Rodent Model of Retinal Degeneration , 2011, Ophthalmic Research.

[32]  G. Freeman,et al.  © The American Society of Gene & Cell Therapy original article Minicircle DNA-based Gene Therapy Coupled With Immune Modulation Permits Long-term Expression of α-l-Iduronidase in Mice With , 2022 .

[33]  V. Sheffield,et al.  Light aversion in mice depends on nonimage-forming irradiance detection. , 2010, Behavioral neuroscience.

[34]  Alfred Stett,et al.  Subretinal electronic chips allow blind patients to read letters and combine them to words , 2010, Proceedings of the Royal Society B: Biological Sciences.

[35]  Shannon M. Conley,et al.  Nanoparticles for retinal gene therapy , 2010, Progress in Retinal and Eye Research.

[36]  G. Daley,et al.  Transplantation of Adult Mouse iPS Cell-Derived Photoreceptor Precursors Restores Retinal Structure and Function in Degenerative Mice , 2010, PloS one.

[37]  Shannon M. Conley,et al.  Gene delivery to mitotic and postmitotic photoreceptors Via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[38]  Elliot M. Frohman,et al.  Direct and consensual murine pupillary reflex metrics: Establishing normative values , 2009, Autonomic Neuroscience.

[39]  K. Gregory-Evans,et al.  Ex vivo gene therapy using intravitreal injection of GDNF-secreting mouse embryonic stem cells in a rat model of retinal degeneration , 2009, Molecular vision.

[40]  Shannon M. Conley,et al.  A Partial Structural and Functional Rescue of a Retinitis Pigmentosa Model with Compacted DNA Nanoparticles , 2009, PloS one.

[41]  T. Reh,et al.  Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. , 2009, Cell stem cell.

[42]  M. Kay,et al.  Gene Transfer to Mouse Heart and Skeletal Muscles Using a Minicircle Expressing Human Vascular Endothelial Growth Factor , 2009, Journal of cardiovascular pharmacology.

[43]  M. Kay,et al.  Novel Minicircle Vector for Gene Therapy in Murine Myocardial Infarction , 2009, Circulation.

[44]  K. Martin,et al.  Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. , 2008, Investigative ophthalmology & visual science.

[45]  M. O'Reilly,et al.  A transgenic mouse model for gene therapy of rhodopsin-linked Retinitis Pigmentosa , 2008, Vision Research.

[46]  S. W. Kim,et al.  Efficient expression of vascular endothelial growth factor using minicircle DNA for angiogenic gene therapy. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[47]  W. Jechlinger Optimization and delivery of plasmid DNA for vaccination , 2006, Expert review of vaccines.

[48]  T. Miyakawa,et al.  Light/dark Transition Test for Mice , 2006, Journal of visualized experiments : JoVE.

[49]  T. Salt,et al.  Retinal repair by transplantation of photoreceptor precursors , 2006, Nature.

[50]  S. D. De Smedt,et al.  Influence of plasmid DNA topology on the transfection properties of DOTAP/DOPE lipoplexes. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[51]  Yixin Zeng,et al.  Minicircle-IFNγ Induces Antiproliferative and Antitumoral Effects in Human Nasopharyngeal Carcinoma , 2006, Clinical Cancer Research.

[52]  Qiliang Li,et al.  Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. , 2005, Analytical biochemistry.

[53]  R M Douglas,et al.  Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system , 2005, Visual Neuroscience.

[54]  M. Kay,et al.  Silencing of episomal transgene expression by plasmid bacterial DNA elements in vivo , 2004, Gene Therapy.

[55]  Krzysztof Palczewski,et al.  Impairment of the transient pupillary light reflex in Rpe65(-/-) mice and humans with leber congenital amaurosis. , 2004, Investigative ophthalmology & visual science.

[56]  M. Kay,et al.  Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[57]  M. Hascöet,et al.  The mouse light/dark box test. , 2003, European journal of pharmacology.

[58]  I. Jackson,et al.  Presence of visual head tracking differentiates normal sighted from retinal degenerate mice , 2002, Neuroscience Letters.

[59]  M. Kay,et al.  Linear DNAs concatemerize in vivo and result in sustained transgene expression in mouse liver. , 2001, Molecular therapy : the journal of the American Society of Gene Therapy.

[60]  M. Seeliger,et al.  Evaluation of the rhodopsin knockout mouse as a model of pure cone function. , 2001, Investigative ophthalmology & visual science.

[61]  D. Scherman,et al.  Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. , 1999, Nucleic acids research.

[62]  D. Scherman,et al.  Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer , 1999, Gene Therapy.

[63]  R L Sidman,et al.  Morphological, physiological, and biochemical changes in rhodopsin knockout mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[64]  P Strata,et al.  The Early Phase of Horizontal Optokinetic Responses in the Pigmented Rat and the Effects of Lesions of the Visual Cortex , 1997, Vision Research.

[65]  P. Sieving,et al.  Retinopathy induced in mice by targeted disruption of the rhodopsin gene , 1997, Nature Genetics.

[66]  B Rosner,et al.  The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. , 1996, Investigative ophthalmology & visual science.

[67]  M. Naash,et al.  Properties of the mouse cone-mediated electroretinogram during light adaptation , 1993, Neuroscience Letters.

[68]  R. Lund,et al.  Development of Light‐activated Pupilloconstriction in Rats as Mediated by Normal and Transplanted Retinae , 1992, The European journal of neuroscience.

[69]  T. L. McGee,et al.  Mutations within the rhodopsin gene in patients with autosomal dominant retinitis pigmentosa. , 1990, The New England journal of medicine.

[70]  David W. Yandell,et al.  A point mutation of the rhodopsin gene in one form of retinitis pigmentosa , 1990, Nature.

[71]  C. Belzung,et al.  Behavioural Validation of a Light/Dark Choice Procedure for Testing Anti-Anxiety Agents , 1989, Behavioural Processes.

[72]  F. Goodwin,et al.  Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines , 1980, Pharmacology Biochemistry and Behavior.

[73]  Wenzhong Li,et al.  Non-viral gene delivery methods. , 2013, Current pharmaceutical biotechnology.

[74]  A. Fire,et al.  © The American Society of Gene & Cell Therapy original article Minicircle DNA Vectors Achieve Sustained Expression Reflected by Active Chromatin and Transcriptional , 2022 .

[75]  P. Schlag,et al.  Performance of High Quality Minicircle DNA for In Vitro and In Vivo Gene Transfer , 2012, Molecular Biotechnology.

[76]  R. MacLaren,et al.  Non‐viral retinal gene therapy: a review , 2012, Clinical & experimental ophthalmology.

[77]  Peter Mayrhofer,et al.  Use of minicircle plasmids for gene therapy. , 2009, Methods in molecular biology.

[78]  U. Grüsser-Cornehls,et al.  Horizontal optokinetic ocular nystagmus in wildtype (B6CBA+/+) and weaver mutant mice , 2004, Experimental Brain Research.