Small nucleolar RNAs: versatile trans-acting molecules of ancient evolutionary origin.

The small nucleolar RNAs (snoRNAs) are an abundant class of trans-acting RNAs that function in ribosome biogenesis in the eukaryotic nucleolus. Elegant work has revealed that most known snoRNAs guide modification of pre-ribosomal RNA (pre-rRNA) by base pairing near target sites. Other snoRNAs are involved in cleavage of pre-rRNA by mechanisms that have not yet been detailed. Moreover, our appreciation of the cellular roles of the snoRNAs is expanding with new evidence that snoRNAs also target modification of small nuclear RNAs and messenger RNAs. Many snoRNAs are produced by unorthodox modes of biogenesis including salvage from introns of pre-mRNAs. The recent discovery that homologs of snoRNAs as well as associated proteins exist in the domain Archaea indicates that the RNA-guided RNA modification system is of ancient evolutionary origin. In addition, it has become clear that the RNA component of vertebrate telomerase (an enzyme implicated in cancer and cellular senescence) is related to snoRNAs. During its evolution, vertebrate telomerase RNA appears to have co-opted a snoRNA domain that is essential for the function of telomerase RNA in vivo. The unique properties of snoRNAs are now being harnessed for basic research and therapeutic applications.

[1]  Maurille J. Fournier,et al.  The Pseudouridine Residues of rRNA: Number, Location, Biosynthesis, and Function , 1998 .

[2]  J. Steitz,et al.  U3, U8 and U13 comprise a new class of mammalian snRNPs localized in the cell nucleolus. , 1989, The EMBO journal.

[3]  R. Lührmann,et al.  cDNA Cloning and Characterization of the Human U3 Small Nucleolar Ribonucleoprotein Complex-Associated 55-Kilodalton Protein , 1998, Molecular and Cellular Biology.

[4]  S. Baserga,et al.  Human Nop5/Nop58 is a component common to the box C/D small nucleolar ribonucleoproteins. , 1999, RNA.

[5]  P. Mitchell,et al.  Functions of the exosome in rRNA, snoRNA and snRNA synthesis , 1999, The EMBO journal.

[6]  Tamás Kiss,et al.  Site-Specific Ribose Methylation of Preribosomal RNA: A Novel Function for Small Nucleolar RNAs , 1996, Cell.

[7]  R. Lührmann,et al.  Isolation of U3 snoRNP from CHO cells: a novel 55 kDa protein binds to the central part of U3 snoRNA. , 1993, Nucleic acids research.

[8]  C R Woese,et al.  The phylogeny of prokaryotes. , 1980, Microbiological sciences.

[9]  R. Ochs,et al.  Fibrillarin: a new protein of the nucleolus identified by autoimmune sera , 1985, Biology of the cell.

[10]  S. Gerbi,et al.  Nucleotide sequence determination and secondary structure of Xenopus U3 snRNA. , 1988, Nucleic acids research.

[11]  B. Peculis RNA processing: Pocket guides to ribosomal RNA , 1997, Current Biology.

[12]  W. Filipowicz,et al.  Rcl1p, the yeast protein similar to the RNA 3′‐phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis , 2000, The EMBO journal.

[13]  S. Baserga,et al.  Functional separation of pre-rRNA processing steps revealed by truncation of the U3 small nucleolar ribonucleoprotein component, Mpp10. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Tollervey,et al.  Synthesis and Assembly of the Box C+D Small Nucleolar RNPs , 2000, Molecular and Cellular Biology.

[15]  W. Doolittle,et al.  Tempo, mode, the progenote, and the universal root. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[16]  K. Collins,et al.  A telomerase component is defective in the human disease dyskeratosis congenita , 1999, Nature.

[17]  J. Steitz,et al.  Structural analysis of the human U3 ribonucleoprotein particle reveal a conserved sequence available for base pairing with pre-rRNA. , 1987, Molecular and cellular biology.

[18]  S. Baserga,et al.  Mpp10p, a U3 small nucleolar ribonucleoprotein component required for pre-18S rRNA processing in yeast , 1997, Molecular and cellular biology.

[19]  K. Collins Mammalian telomeres and telomerase. , 2000, Current opinion in cell biology.

[20]  R. van Driel,et al.  Coiled bodies are predisposed to a spatial association with genes that contain snoRNA sequences in their introns , 1999, Journal of cellular biochemistry.

[21]  A. Fatica,et al.  Fibrillarin binds directly and specifically to U16 box C/D snoRNA. , 2000, RNA.

[22]  D. Tollervey,et al.  Function and synthesis of small nucleolar RNAs. , 1997, Current opinion in cell biology.

[23]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[24]  J. Rossi,et al.  Ribozyme therapy for HIV infection. , 2000, Advanced drug delivery reviews.

[25]  J. Steitz,et al.  A small nucleolar RNA requirement for site-specific ribose methylation of rRNA in Xenopus. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[26]  T. Pederson,et al.  A 7-methylguanosine cap commits U3 and U8 small nuclear RNAs to the nucleolar localization pathway. , 1998, Nucleic acids research.

[27]  G. Blobel,et al.  cDNA cloning and sequencing of human fibrillarin, a conserved nucleolar protein recognized by autoimmune antisera. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Lührmann,et al.  Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy. , 1999, Human molecular genetics.

[29]  E. Petfalski,et al.  Precursors to the U3 Small Nucleolar RNA Lack Small Nucleolar RNP Proteins but Are Stabilized by La Binding , 2000, Molecular and Cellular Biology.

[30]  G. Dreyfuss,et al.  Specific Sequences of the Sm and Sm-like (Lsm) Proteins Mediate Their Interaction with the Spinal Muscular Atrophy Disease Gene Product (SMN)* , 2000, The Journal of Biological Chemistry.

[31]  S. Gerbi,et al.  Nucleolar localization elements in U8 snoRNA differ from sequences required for rRNA processing. , 1998, RNA.

[32]  L. Phylactou,et al.  Ribozymes as therapeutic tools for genetic disease. , 1998, Human molecular genetics.

[33]  B. Maden The numerous modified nucleotides in eukaryotic ribosomal RNA. , 1990, Progress in nucleic acid research and molecular biology.

[34]  M. Dundr,et al.  The nucleolus: an old factory with unexpected capabilities. , 2000, Trends in cell biology.

[35]  K. Nishikura,et al.  A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. , 2000, RNA.

[36]  E. Maxwell,et al.  Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription. , 2000, RNA.

[37]  W. Filipowicz,et al.  Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro , 1991, Cell.

[38]  B. Maden Eukaryotic rRNA methylation: the calm before the Sno storm. , 1998, Trends in biochemical sciences.

[39]  P. Mitchell,et al.  Musing on the structural organization of the exosome complex , 2000, Nature Structural Biology.

[40]  Colleen M. Niswender,et al.  RNA Editing of the Human Serotonin 5-Hydroxytryptamine 2C Receptor Silences Constitutive Activity* , 1999, The Journal of Biological Chemistry.

[41]  Tamás Kiss,et al.  Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs , 1997, Cell.

[42]  F. Amaldi,et al.  Box H and box ACA are nucleolar localization elements of U17 small nucleolar RNA. , 1999, Molecular biology of the cell.

[43]  J. Bachellerie,et al.  Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides , 1996, Nature.

[44]  L. Lindahl,et al.  RNase MRP and rRNA processing , 2004, Molecular Biology Reports.

[45]  M. Caizergues-Ferrer,et al.  A small nucleolar RNP protein is required for pseudouridylation of eukaryotic ribosomal RNAs , 1997, The EMBO journal.

[46]  E. Conway de Macario,et al.  Identification of genes in the genome of the archaeon Methanosarcina mazeii that code for homologs of nuclear eukaryotic molecules involved in RNA processing. , 2000, Gene.

[47]  A. Lamond,et al.  Mutational analysis of p80 coilin indicates a functional interaction between coiled bodies and the nucleolus , 1995, The Journal of cell biology.

[48]  David Tollervey,et al.  Dhr1p, a Putative DEAH-Box RNA Helicase, Is Associated with the Box C+D snoRNP U3 , 2000, Molecular and Cellular Biology.

[49]  J. Steitz,et al.  Guided tours: from precursor snoRNA to functional snoRNP. , 1999, Current opinion in cell biology.

[50]  S. Clarke,et al.  S-Adenosylmethionine-dependent Methylation in Saccharomyces cerevisiae , 1999, The Journal of Biological Chemistry.

[51]  G. Dreyfuss,et al.  The Spinal Muscular Atrophy Disease Gene Product, SMN, and Its Associated Protein SIP1 Are in a Complex with Spliceosomal snRNP Proteins , 1997, Cell.

[52]  A. Fatica,et al.  Yeast snoRNA accumulation relies on a cleavage‐dependent/polyadenylation‐independent 3′‐processing apparatus , 2000, The EMBO journal.

[53]  M. Mann,et al.  Cbf5p, a potential pseudouridine synthase, and Nhp2p, a putative RNA-binding protein, are present together with Gar1p in all H BOX/ACA-motif snoRNPs and constitute a common bipartite structure. , 1998, RNA.

[54]  Z. Kiss-László,et al.  Sequence and structural elements of methylation guide snoRNAs essential for site‐specific ribose methylation of pre‐rRNA , 1998, The EMBO journal.

[55]  R. Terns,et al.  The box C/D motif directs snoRNA 5'-cap hypermethylation. , 2000, Nucleic acids research.

[56]  A. Lamond,et al.  Inhibition of protein dephosphorylation results in the accumulation of splicing snRNPs and coiled bodies within the nucleolus. , 1997, Experimental cell research.

[57]  R. Lührmann,et al.  An in vivo and in vitro structure-function analysis of the Saccharomyces cerevisiae U3A snoRNP: protein-RNA contacts and base-pair interaction with the pre-ribosomal RNA. , 1997, Journal of molecular biology.

[58]  D. Goldfarb,et al.  Nuclear transport of RNAs in microinjected Xenopus oocytes. , 1998, Methods in cell biology.

[59]  W. Filipowicz Imprinted expression of small nucleolar RNAs in brain: time for RNomics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  H. James,et al.  The therapeutic potential of ribozymes. , 1998, Blood.

[61]  B. Séraphin,et al.  The Schizosaccharomyces pombe protein Yab8p and a novel factor, Yip1p, share structural and functional similarity with the spinal muscular atrophy-associated proteins SMN and SIP1. , 2000, Human molecular genetics.

[62]  H. Pluk,et al.  Interaction of the U3-55k protein with U3 snoRNA is mediated by the box B/C motif of U3 and the WD repeats of U3-55k. , 2000, Nucleic acids research.

[63]  A. Lamond,et al.  Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein. , 1998, Experimental cell research.

[64]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. , 1998, Trends in biochemical sciences.

[65]  S. Goodison,et al.  Role of telomerase in cell senescence and oncogenesis. , 2000, Annual review of medicine.

[66]  Laurie Smith,et al.  The RNA World of the Nucleolus: Two Major Families of Small RNAs Defined by Different Box Elements with Related Functions , 1996, Cell.

[67]  P. Bouvet,et al.  Nucleolin functions in the first step of ribosomal RNA processing , 1998, The EMBO journal.

[68]  R. Cedergren,et al.  A small nucleolar RNA:ribozyme hybrid cleaves a nucleolar RNA target in vivo with near-perfect efficiency. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[69]  K. L. Himmel,et al.  The yeast SEN1 gene is required for the processing of diverse RNA classes. , 1997, Nucleic acids research.

[70]  E. Petfalski,et al.  Processing of the Precursors to Small Nucleolar RNAs and rRNAs Requires Common Components , 1998, Molecular and Cellular Biology.

[71]  J. Brockenbrough,et al.  Nop5p Is a Small Nucleolar Ribonucleoprotein Component Required for Pre-18 S rRNA Processing in Yeast* , 1998, The Journal of Biological Chemistry.

[72]  M. Terns,et al.  A common maturation pathway for small nucleolar RNAs. , 1995, The EMBO journal.

[73]  P. Mitchell,et al.  Clustering of modified nucleotides at the functional center of bacterial ribosomal RNA , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[74]  C. Pai,et al.  Cell-cycle-dependent alterations of a highly phosphorylated nucleolar protein p130 are associated with nucleologenesis. , 1995, Journal of cell science.

[75]  S. Eddy,et al.  Homologs of small nucleolar RNAs in Archaea. , 2000, Science.

[76]  J. Steitz,et al.  An intact Box C sequence in the U3 snRNA is required for binding of fibrillarin, the protein common to the major family of nucleolar snRNPs. , 1991, The EMBO journal.

[77]  Maurille J. Fournier,et al.  Point Mutations in Yeast CBF5 Can Abolish In Vivo Pseudouridylation of rRNA , 1999, Molecular and Cellular Biology.

[78]  M. W. Clark,et al.  SSB-1 of the yeast Saccharomyces cerevisiae is a nucleolar-specific, silver-binding protein that is associated with the snR10 and snR11 small nuclear RNAs , 1990, The Journal of cell biology.

[79]  S. Baserga,et al.  M phase phosphoprotein 10 is a human U3 small nucleolar ribonucleoprotein component. , 1998, Molecular biology of the cell.

[80]  D. Tollervey,et al.  The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. , 1998, Genes & development.

[81]  D. Tollervey Small Nucleolar RNAs Guide Ribosomal RNA Methylation , 1996, Science.

[82]  D. Tollervey,et al.  Ribosome synthesis in Saccharomyces cerevisiae. , 1999, Annual review of genetics.

[83]  L. Dolan,et al.  The movement of coiled bodies visualized in living plant cells by the green fluorescent protein. , 1999, Molecular biology of the cell.

[84]  J. Steitz,et al.  Non-coding snoRNA host genes in Drosophila: expression strategies for modification guide snoRNAs. , 2001, European journal of cell biology.

[85]  H. Vos,et al.  Yeast Rrp9p is an evolutionarily conserved U3 snoRNP protein essential for early pre-rRNA processing cleavages and requires box C for its association. , 2000, RNA.

[86]  X. Darzacq,et al.  Nucleolar Factors Direct the 2′-O-Ribose Methylation and Pseudouridylation of U6 Spliceosomal RNA , 1999, Molecular and Cellular Biology.

[87]  C. Bagni,et al.  Gar1p Binds to the Small Nucleolar RNAs snR10 and snR30 in Vitro through a Nontypical RNA Binding Element* , 1998, The Journal of Biological Chemistry.

[88]  P J Shaw,et al.  Clusters of multiple different small nucleolar RNA genes in plants are expressed as and processed from polycistronic pre‐snoRNAs , 1997, The EMBO journal.

[89]  K. A. Amiri Fibrillarin-like proteins occur in the domain Archaea , 1994, Journal of bacteriology.

[90]  W. Filipowicz,et al.  Human H / ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP 2 and NOP 10 , 2000 .

[91]  C. Murphy,et al.  Assembly of the nuclear transcription and processing machinery: Cajal bodies (coiled bodies) and transcriptosomes. , 1999, Molecular biology of the cell.

[92]  R Cedergren,et al.  SnoRNAs as tools for RNA cleavage and modification. , 1997, Nucleic acids symposium series.

[93]  W. Filipowicz,et al.  In Vitro Assembly of Human H/ACA Small Nucleolar RNPs Reveals Unique Features of U17 and Telomerase RNAs , 2000, Molecular and Cellular Biology.

[94]  I. Bozzoni,et al.  The Rev protein is able to transport to the cytoplasm small nucleolar RNAs containing a Rev binding element. , 1999, RNA.

[95]  M. Culbertson,et al.  The Putative Nucleic Acid Helicase Sen1p Is Required for Formation and Stability of Termini and for Maximal Rates of Synthesis and Levels of Accumulation of Small Nucleolar RNAs inSaccharomyces cerevisiae , 1998, Molecular and Cellular Biology.

[96]  M. Fournier,et al.  The small nucleolar RNAs. , 1995, Annual review of biochemistry.

[97]  L. Minvielle-Sebastia,et al.  Synthetic lethal interactions with conditional poly(A) polymerase alleles identify LCP5, a gene involved in 18S rRNA maturation. , 1998, RNA.

[98]  D. Tollervey,et al.  Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly , 1993, Cell.

[99]  B. Séraphin,et al.  Accurate Processing of a Eukaryotic Precursor Ribosomal RNA by Ribonuclease MRP in Vitro , 1996, Science.

[100]  G. Stier,et al.  SMN Tudor domain structure and its interaction with the Sm proteins , 2001, Nature Structural Biology.

[101]  S. Gerbi,et al.  Conserved Boxes C and D are essential nucleolar localization elements of U14 and U8 snoRNAs , 1998, The EMBO journal.

[102]  G. Blobel,et al.  Nopp 140 shuttles on tracks between nucleolus and cytoplasm , 1992, Cell.

[103]  B. Kastner,et al.  Isolation and characterization of the small nucleolar ribonucleoprotein particle snR30 from Saccharomyces cerevisiae , 1995, The Journal of Biological Chemistry.

[104]  J. Bachellerie,et al.  Small Nucleolar RNAs Guide the Ribose Methylations of Eukaryotic rRNAs , 1998 .

[105]  K. Collins,et al.  Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. , 2000, Molecular cell.

[106]  J. Ni,et al.  Small Nucleolar RNAs Direct Site-Specific Synthesis of Pseudouridine in Ribosomal RNA , 1997, Cell.

[107]  Y. Yang,et al.  Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. , 2000, Molecular biology of the cell.

[108]  J. Bachellerie,et al.  SnoRNA-guided ribose methylation of rRNA: structural features of the guide RNA duplex influencing the extent of the reaction. , 1998, Nucleic acids research.

[109]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[110]  R. Terns,et al.  Nuclear Retention Elements of U3 Small Nucleolar RNA , 1999, Molecular and Cellular Biology.

[111]  R. Singer,et al.  The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization , 1998, The EMBO journal.

[112]  E. Tan,et al.  Coiled bodies in the nucleolus of breast cancer cells. , 1994, Journal of cell science.

[113]  J. Bachellerie,et al.  Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. , 2000, Journal of molecular biology.

[114]  H. Busch,et al.  Multiple states of U3 RNA in Novikoff hepatoma nucleoli. , 1984, Biochemistry.

[115]  J Ofengand,et al.  Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. , 1997, Journal of molecular biology.

[116]  I. Bozzoni,et al.  Identification of a Novel Element Required for Processing of Intron-Encoded Box C/D Small Nucleolar RNAs inSaccharomyces cerevisiae , 2000, Molecular and Cellular Biology.

[117]  C. Ponting,et al.  Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism? , 1997, Human molecular genetics.

[118]  D. Tollervey,et al.  Nop58p is a common component of the box C+D snoRNPs that is required for snoRNA stability. , 1999, RNA.

[119]  J. Rossi,et al.  Ribozyme-mediated inhibition of HIV 1 suggests nucleolar trafficking of HIV-1 RNA. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[120]  D. Tollervey,et al.  Base pairing between U3 and the pre‐ribosomal RNA is required for 18S rRNA synthesis. , 1995, The EMBO journal.

[121]  P. Legrain,et al.  Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1 , 1998, The EMBO journal.

[122]  A. Brack,et al.  The molecular origins of life : assembling pieces of the puzzle , 1998 .

[123]  P. Legrain,et al.  Yeast RNase III as a key processing enzyme in small nucleolar RNAs metabolism. , 1998, Journal of molecular biology.

[124]  A. Fatica,et al.  In Vivo Identification of Nuclear Factors Interacting with the Conserved Elements of Box C/D Small Nucleolar RNAs , 1998, Molecular and Cellular Biology.

[125]  I. Raška,et al.  Immunological and ultrastructural studies of the nuclear coiled body with autoimmune antibodies. , 1991, Experimental cell research.

[126]  D. Suck,et al.  The archaeal homolog of the Imp4 protein, a eukaryotic U3 snoRNP component. , 2001, Trends in biochemical sciences.

[127]  J. Rossi Therapeutic antisense and ribozymes. , 1995, British medical bulletin.

[128]  M. Bortolin,et al.  Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. , 1998, RNA.

[129]  J. Steitz,et al.  ENHANCED PERSPECTIVE: Small RNA Chaperones for Ribosome Biogenesis , 1995, Science.

[130]  B. McStay,et al.  Identification and cDNA cloning of a Xenopus nucleolar phosphoprotein, xNopp180, that is the homolog of the rat nucleolar protein Nopp140. , 1995, Journal of cell science.

[131]  E V Koonin,et al.  Pseudouridine synthases: four families of enzymes containing a putative uridine-binding motif also conserved in dUTPases and dCTP deaminases. , 1996, Nucleic acids research.

[132]  et al.,et al.  The RNA component of human telomerase , 1995, Science.

[133]  B. Peculis,et al.  Identification of a U8 snoRNA-specific Binding Protein* , 1999, The Journal of Biological Chemistry.

[134]  P. Beal,et al.  Synthetic substrate analogs for the RNA-editing adenosine deaminase ADAR-2. , 1999, Nucleic acids research.

[135]  Yunfeng Yang,et al.  Nopp140 Functions as a Molecular Link Between the Nucleolus and the Coiled Bodies , 1998, The Journal of cell biology.

[136]  C. Cadwell,et al.  The yeast nucleolar protein Cbf5p is involved in rRNA biosynthesis and interacts genetically with the RNA polymerase I transcription factor RRN3 , 1997, Molecular and cellular biology.

[137]  D. Tollervey,et al.  A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. , 1993, The EMBO journal.

[138]  W. Filipowicz,et al.  Structure and biogenesis of small nucleolar RNAs acting as guides for ribosomal RNA modification. , 1999, Acta biochimica Polonica.

[139]  M. Terns,et al.  Retention and 5' cap trimethylation of U3 snRNA in the nucleus. , 1994, Science.

[140]  M. Meguro,et al.  Large-scale evaluation of imprinting status in the Prader-Willi syndrome region: an imprinted direct repeat cluster resembling small nucleolar RNA genes. , 2001, Human molecular genetics.

[141]  Kathleen R. Noon,et al.  Posttranscriptional Modifications in 16 S and 23 S rRNAs of the Archaeal Hyperthermophile Sulfolobus solfataricus , 1998 .

[142]  I. Bozzoni,et al.  Processing of the Intron-Encoded U18 Small Nucleolar RNA in the Yeast Saccharomyces cerevisiaeRelies on Both Exo- and Endonucleolytic Activities , 1998, Molecular and Cellular Biology.

[143]  E. Maxwell,et al.  Elements essential for processing intronic U14 snoRNA are located at the termini of the mature snoRNA sequence and include conserved nucleotide boxes C and D. , 1996, RNA.

[144]  C. Greider Telomerase activity, cell proliferation, and cancer. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[145]  M. Robinson,et al.  Reconstitution of human telomerase activity in vitro , 1998, Current Biology.

[146]  Liang-Hu Qu,et al.  Seven Novel Methylation Guide Small Nucleolar RNAs Are Processed from a Common Polycistronic Transcript by Rat1p and RNase III in Yeast , 1999, Molecular and Cellular Biology.

[147]  Y. Watanabe,et al.  Evolutionary appearance of genes encoding proteins associated with box H/ACA snoRNAs: cbf5p in Euglena gracilis, an early diverging eukaryote, and candidate Gar1p and Nop10p homologs in archaebacteria. , 2000, Nucleic acids research.

[148]  P J Shaw,et al.  Localization and processing from a polycistronic precursor of novel snoRNAs in maize. , 1998, Journal of cell science.

[149]  J. Bachellerie,et al.  Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. , 1996, Journal of molecular biology.

[150]  C. Murphy,et al.  In vitro assembly of coiled bodies in Xenopus egg extract. , 1994, Molecular biology of the cell.

[151]  Tamás Kiss,et al.  Elements essential for accumulation and function of small nucleolar RNAs directing site‐specific pseudouridylation of ribosomal RNAs , 1999, The EMBO journal.

[152]  James A. McCloskey,et al.  The RNA modification database--1998 , 1998, Nucleic Acids Res..

[153]  X. Darzacq,et al.  Processing of Intron-Encoded Box C/D Small Nucleolar RNAs Lacking a 5′,3′-Terminal Stem Structure , 2000, Molecular and Cellular Biology.

[154]  U. Francke,et al.  Small evolutionarily conserved RNA, resembling C/D box small nucleolar RNA, is transcribed from PWCR1, a novel imprinted gene in the Prader-Willi deletion region, which Is highly expressed in brain. , 2000, American journal of human genetics.

[155]  J. Steitz,et al.  Classification of gas5 as a Multi-Small-Nucleolar-RNA (snoRNA) Host Gene and a Member of the 5′-Terminal Oligopyrimidine Gene Family Reveals Common Features of snoRNA Host Genes , 1998, Molecular and Cellular Biology.

[156]  J. Weissenbach,et al.  Identification and characterization of a spinal muscular atrophy-determining gene , 1995, Cell.

[157]  Christiane Branlant,et al.  A Common Core RNP Structure Shared between the Small Nucleoar Box C/D RNPs and the Spliceosomal U4 snRNP , 2000, Cell.

[158]  G. Dreyfuss,et al.  The SMN–SIP1 Complex Has an Essential Role in Spliceosomal snRNP Biogenesis , 1997, Cell.

[159]  S. Gerbi,et al.  Transient nucleolar localization Of U6 small nuclear RNA in Xenopus Laevis oocytes. , 2000, Molecular biology of the cell.

[160]  Bryan Frank,et al.  Two Inactive Fragments of the Integral RNA Cooperate To Assemble Active Telomerase with the Human Protein Catalytic Subunit (hTERT) In Vitro , 1999, Molecular and Cellular Biology.

[161]  W. Filipowicz,et al.  The Host Gene for Intronic U17 Small Nucleolar RNAs in Mammals Has No Protein-Coding Potential and Is a Member of the 5′-Terminal Oligopyrimidine Gene Family , 1998, Molecular and Cellular Biology.

[162]  M. Fournier,et al.  Functional Mapping of the U3 Small Nucleolar RNA from the Yeast Saccharomyces cerevisiae , 1998, Molecular and Cellular Biology.

[163]  R. DePinho,et al.  A critical role for telomeres in suppressing and facilitating carcinogenesis. , 2000, Current opinion in genetics & development.

[164]  D. Tollervey,et al.  GAR1 is an essential small nucleolar RNP protein required for pre‐rRNA processing in yeast. , 1992, The EMBO journal.

[165]  B. Sollner-Webb,et al.  Novel intron-encoded small nucleolar RNAs , 1993, Cell.

[166]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. , 1995, Trends in biochemical sciences.

[167]  I. Mattaj,et al.  Nucleocytoplasmic transport: the soluble phase. , 1998, Annual review of biochemistry.

[168]  J. Steitz,et al.  The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing , 1990, Cell.

[169]  M. Caizergues-Ferrer,et al.  Nhp2p and Nop10p are essential for the function of H/ACA snoRNPs , 1998, The EMBO journal.

[170]  T. Kiss,et al.  Characterisation of the U83 and U84 small nucleolar RNAs: two novel 2'-O-ribose methylation guide RNAs that lack complementarities to ribosomal RNAs. , 2000, Nucleic acids research.

[171]  T. Cech,et al.  Telomerase and the maintenance of chromosome ends. , 1999, Current opinion in cell biology.

[172]  D. Spector,et al.  Nucleologenesis: U3 snRNA-containing prenucleolar bodies move to sites of active pre-rRNA transcription after mitosis. , 1994, Molecular biology of the cell.

[173]  Jiunn-Liang Chen,et al.  Secondary Structure of Vertebrate Telomerase RNA , 2000, Cell.

[174]  T. Koji,et al.  A Rat RuvB-like Protein, TIP49a, Is a Germ Cell-enriched Novel DNA Helicase* , 1999, The Journal of Biological Chemistry.

[175]  R. Parker,et al.  Yeast Exosome Mutants Accumulate 3′-Extended Polyadenylated Forms of U4 Small Nuclear RNA and Small Nucleolar RNAs , 2000, Molecular and Cellular Biology.

[176]  A. Russell,et al.  Preribosomal RNA processing in archaea: characterization of the RNP endonuclease mediated processing of precursor 16S rRNA in the thermoacidophile Sulfolobus acidocaldarius. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[177]  E. Maxwell,et al.  5'ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3. , 1996, RNA.

[178]  S. Gerbi,et al.  In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. , 1990, The EMBO journal.

[179]  T. Hartshorne,et al.  A common core structure for U3 small nucleolar RNAs. , 1994, Nucleic acids research.

[180]  A. Matera,et al.  Of coiled bodies, gems, and salmon , 1998, Journal of cellular biochemistry.

[181]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[182]  M. Schmitt,et al.  The yeast,Saccharomyces cerevisiae, RNase P/MRP ribonucleoprotein endoribonuclease family , 2004, Molecular Biology Reports.

[183]  D. Tollervey,et al.  Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis , 1997, Molecular and cellular biology.

[184]  S. Baserga,et al.  Imp3p and Imp4p, Two Specific Components of the U3 Small Nucleolar Ribonucleoprotein That Are Essential for Pre-18S rRNA Processing , 1999, Molecular and Cellular Biology.

[185]  R. Terns,et al.  Nucleolar localization signals of Box H/ACA small nucleolar RNAs , 1999, The EMBO journal.

[186]  G. Blobel,et al.  NAP57, a mammalian nucleolar protein with a putative homolog in yeast and bacteria [published erratum appears in J Cell Biol 1998 Jan 26;140(2):447] , 1994, The Journal of cell biology.

[187]  J. Boeke,et al.  Intronic snoRNA biosynthesis in Saccharomyces cerevisiae depends on the lariat-debranching enzyme: intron length effects and activity of a precursor snoRNA. , 1998, RNA.

[188]  D. Tollervey,et al.  A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. , 1989, The EMBO journal.

[189]  Jeffrey B. Cheng,et al.  A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3′ End , 1999, Molecular and Cellular Biology.

[190]  S. Gerbi,et al.  U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes. , 1999, Journal of molecular biology.

[191]  T. Pederson,et al.  The plurifunctional nucleolus. , 1998, Nucleic acids research.

[192]  S. Gerbi Small nucleolar RNA. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[193]  J. Steitz,et al.  Modification of U6 spliceosomal RNA is guided by other small RNAs. , 1998, Molecular cell.

[194]  J. Steitz,et al.  Sno Storm in the Nucleolus: New Roles for Myriad Small RNPs , 1997, Cell.

[195]  C. Autexier,et al.  Reconstitution of human telomerase activity and identification of a minimal functional region of the human telomerase RNA. , 1996, The EMBO journal.

[196]  J. Bachellerie,et al.  Guiding ribose methylation of rRNA. , 1997, Trends in biochemical sciences.

[197]  M. Ares,et al.  Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre‐ribosomal RNA and impairs formation of 18S ribosomal RNA. , 1991, The EMBO journal.

[198]  E. Maxwell,et al.  In vitro assembly of the mouse U14 snoRNP core complex and identification of a 65-kDa box C/D-binding protein. , 1998, RNA.

[199]  J. Shay,et al.  Role of telomerase in cellular proliferation and cancer , 1999, Journal of cellular physiology.

[200]  M. Terns,et al.  3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei , 1992, Molecular and cellular biology.

[201]  Y. Motorin,et al.  The first determination of pseudouridine residues in 23S ribosomal RNA from hyperthermophilic Archaea Sulfolobus acidocaldarius , 1999, FEBS letters.

[202]  T. Kiss,et al.  The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. , 1997, Genes & development.

[203]  D. Tollervey,et al.  The small nucleolar RNP protein NOP1 (fibrillarin) is required for pre‐rRNA processing in yeast. , 1991, The EMBO journal.

[204]  S. Gerbi,et al.  Nucleolar localization elements of Xenopus laevis U3 small nucleolar RNA. , 1998, Molecular biology of the cell.

[205]  J. Steitz,et al.  Precursor molecules of both human 5S ribosomal RNA and transfer RNAs are bound by a cellular protein reactive with anti-La Lupus antibodies , 1982, Cell.

[206]  A. Fatica,et al.  Processing of the intron‐encoded U16 and U18 snoRNAs: the conserved C and D boxes control both the processing reaction and the stability of the mature snoRNA. , 1996, The EMBO journal.

[207]  D. Lafontaine,et al.  Stable expression in yeast of the mature form of human telomerase RNA depends on its association with the box H/ACA small nucleolar RNP proteins Cbf5p, Nhp2p and Nop10p. , 2001, Nucleic acids research.

[208]  B. Bass,et al.  Inosine exists in mRNA at tissue‐specific levels and is most abundant in brain mRNA , 1998, The EMBO journal.

[209]  A. Hüttenhofer,et al.  Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[210]  I. Bozzoni,et al.  In vitro study of processing of the intron-encoded U16 small nucleolar RNA in Xenopus laevis , 1994, Molecular and cellular biology.

[211]  R. Emeson,et al.  Regulation of serotonin-2C receptor G-protein coupling by RNA editing , 1997, Nature.

[212]  J. Rossi Ribozymes in the Nucleolus , 1999, Science.