Change-point detection for recursive Bayesian geoacoustic inversions.

In order to carry out geoacoustic inversion in low signal-to-noise ratio (SNR) conditions, extended duration observations coupled with source and/or receiver motion may be necessary. As a result, change in the underlying model parameters due to time or space is anticipated. In this paper, an inversion method is proposed for cases when the model parameters change abruptly or slowly. A model parameter change-point detection method is developed to detect the change in the model parameters using the importance samples and corresponding weights that are already available from the recursive Bayesian inversion. If the model parameters change abruptly, a change-point will be detected and the inversion will restart with the pulse measurement after the change-point. If the model parameters change gradually, the inversion (based on constant model parameters) may proceed until the accumulated model parameter mismatch is significant and triggers the detection of a change-point. These change-point detections form the heuristics for controlling the coherent integration time in recursive Bayesian inversion. The method is demonstrated in simulation with parameters corresponding to the low SNR, 100-900 Hz linear frequency modulation pulses observed in the Shallow Water 2006 experiment [Tan, Gerstoft, Yardim, and Hodgkiss, J. Acoust. Soc. Am. 136, 1187-1198 (2014)].

[1]  Bien Aik Tan,et al.  Recursive Bayesian synthetic aperture geoacoustic inversion in the presence of motion dynamics. , 2014, The Journal of the Acoustical Society of America.

[2]  Bien Aik Tan,et al.  Broadband synthetic aperture geoacoustic inversion. , 2013, The Journal of the Acoustical Society of America.

[3]  Jan Dettmer,et al.  Probabilistic two-dimensional water-column and seabed inversion with self-adapting parameterizations. , 2013, The Journal of the Acoustical Society of America.

[4]  Jonathan L. Shapiro,et al.  Thompson Sampling in Switching Environments with Bayesian Online Change Point Detection , 2013, AISTATS 2013.

[5]  Jonathan L. Shapiro,et al.  Thompson Sampling in Switching Environments with Bayesian Online Change Detection , 2013, AISTATS.

[6]  Raphael Gottardo,et al.  On-line changepoint detection and parameter estimation with application to genomic data , 2012, Stat. Comput..

[7]  Peter Gerstoft,et al.  Sequential geoacoustic inversion at the continental shelfbreak. , 2012, The Journal of the Acoustical Society of America.

[8]  Jan Dettmer,et al.  Sequential trans-dimensional Monte Carlo for range-dependent geoacoustic inversion. , 2011, The Journal of the Acoustical Society of America.

[9]  Peter Gerstoft,et al.  An Overview of Sequential Bayesian Filtering in Ocean Acoustics , 2011, IEEE Journal of Oceanic Engineering.

[10]  Peter Gerstoft,et al.  Geoacoustic and source tracking using particle filtering: experimental results. , 2010, The Journal of the Acoustical Society of America.

[11]  Peter Gerstoft,et al.  Geoacoustic Inversion Using Backpropagation , 2010, IEEE Journal of Oceanic Engineering.

[12]  Peter Gerstoft,et al.  Tracking of geoacoustic parameters using Kalman and particle filters. , 2009, The Journal of the Acoustical Society of America.

[13]  Peter H Dahl,et al.  Observations of the R reflector and sediment interface reflection at the Shallow Water '06 Central Site. , 2008, The Journal of the Acoustical Society of America.

[14]  N. Chapman,et al.  Bayesian geoacoustic inversion in a dynamic shallow water environment. , 2008, The Journal of the Acoustical Society of America.

[15]  Peter Gerstoft,et al.  Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion. , 2008, The Journal of the Acoustical Society of America.

[16]  Ryan P. Adams,et al.  Bayesian Online Changepoint Detection , 2007, 0710.3742.

[17]  P. Fearnhead,et al.  On‐line inference for multiple changepoint problems , 2007 .

[18]  Peter Gerstoft,et al.  Statistical maritime radar duct estimation using hybrid genetic algorithm–Markov chain Monte Carlo method , 2007 .

[19]  Peter Gerstoft,et al.  Uncertainty analysis in matched-field geoacoustic inversions. , 2006, The Journal of the Acoustical Society of America.

[20]  Peter Gerstoft,et al.  Bayesian model selection applied to self-noise geoacoustic inversion , 2004 .

[21]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[22]  Peter Gerstoft,et al.  Geoacoustic inversion of tow-ship noise via near-field-matched-field processing , 2003 .

[23]  Dominic S. Lee,et al.  A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..

[24]  P. Gerstoft,et al.  Range-dependent seabed characterization by inversion of acoustic data from a towed receiver array. , 2001, The Journal of the Acoustical Society of America.

[25]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[26]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[27]  K. Riedel Numerical Bayesian Methods Applied to Signal Processing , 1996 .

[28]  William J. Fitzgerald,et al.  Retrospective Changepoint Detection , 1996 .

[29]  Mark Porter,et al.  The KRAKEN normal mode program , 1992 .

[30]  John G. Proakis,et al.  Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..

[31]  A. F. Smith A Bayesian approach to inference about a change-point in a sequence of random variables , 1975 .

[32]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .