Design and signaling mechanism of light‐regulated histidine kinases

[1]  K. Moffat Time-Resolved Biochemical Crystallography: A Mechanistic Perspective , 2010 .

[2]  K. Moffat,et al.  Light-activated DNA binding in a designed allosteric protein , 2008, Proceedings of the National Academy of Sciences.

[3]  Michael T. Laub,et al.  Rewiring the Specificity of Two-Component Signal Transduction Systems , 2008, Cell.

[4]  C. Bashor,et al.  References and Notes Supporting Online Material Using Engineered Scaffold Interactions to Reshape Map Kinase Pathway Signaling Dynamics , 2022 .

[5]  Dan Siegal-Gaskins,et al.  A photosensory two-component system regulates bacterial cell attachment , 2007, Proceedings of the National Academy of Sciences.

[6]  Andreas Möglich,et al.  Structural basis for light-dependent signaling in the dimeric LOV domain of the photosensor YtvA. , 2007, Journal of molecular biology.

[7]  R. Bogomolni,et al.  Blue-Light-Activated Histidine Kinases: Two-Component Sensors in Bacteria , 2007, Science.

[8]  K. Moffat,et al.  Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism. , 2007, Biochemistry.

[9]  Donald M. Engelman,et al.  Dynamic Helix Interactions in Transmembrane Signaling , 2006, Cell.

[10]  B. Bassler,et al.  Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing , 2006, Cell.

[11]  Andrei N. Lupas,et al.  The HAMP Domain Structure Implies Helix Rotation in Transmembrane Signaling , 2006, Cell.

[12]  M. Inouye Signaling by Transmembrane Proteins Shifts Gears , 2006, Cell.

[13]  L. Aravind,et al.  The signaling helix: a common functional theme in diverse signaling proteins , 2006, Biology Direct.

[14]  M. Machius,et al.  A proximal arginine R206 participates in switching of the Bradyrhizobium japonicum FixL oxygen sensor. , 2006, Journal of molecular biology.

[15]  Peer Bork,et al.  SMART 5: domains in the context of genomes and networks , 2005, Nucleic Acids Res..

[16]  Wayne A Hendrickson,et al.  Structure of the entire cytoplasmic portion of a sensor histidine‐kinase protein , 2005, The EMBO journal.

[17]  Christopher A. Voigt,et al.  Synthetic biology: Engineering Escherichia coli to see light , 2005, Nature.

[18]  K. Moffat,et al.  Crystal structures of deoxy and CO-bound bjFixLH reveal details of ligand recognition and signaling. , 2005, Biochemistry.

[19]  B. Mikami,et al.  A Redox-controlled Molecular Switch Revealed by the Crystal Structure of a Bacterial Heme PAS Sensor* , 2004, Journal of Biological Chemistry.

[20]  W. Lim,et al.  Reprogramming Control of an Allosteric Signaling Switch Through Modular Recombination , 2003, Science.

[21]  Kevin H. Gardner,et al.  Structural Basis of a Phototropin Light Switch , 2003, Science.

[22]  T. Pawson,et al.  Assembly of Cell Regulatory Systems Through Protein Interaction Domains , 2003, Science.

[23]  Keith Moffat,et al.  The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. , 2003, Biochemistry.

[24]  E. Dioum,et al.  Ligand and oxidation-state specific regulation of the heme-based oxygen sensor FixL from Sinorhizobium meliloti. , 2002, Biochemistry.

[25]  Wolfgang Gärtner,et al.  First evidence for phototropin-related blue-light receptors in prokaryotes. , 2002, Biophysical journal.

[26]  W. Eisenreich,et al.  An optomechanical transducer in the blue light receptor phototropin from Avena sativa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  W. Hoff,et al.  Folding and signaling share the same pathway in a photoreceptor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  K. Gardner,et al.  PAS kinase: An evolutionarily conserved PAS domain-regulated serine/threonine kinase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[29]  K. Devine,et al.  New Family of Regulators in the Environmental Signaling Pathway Which Activates the General Stress Transcription Factor ςB of Bacillus subtilis , 2001, Journal of bacteriology.

[30]  E. Koonin,et al.  The STAS domain — a link between anion transporters and antisigma-factor antagonists , 2000, Current Biology.

[31]  I. Zhulin,et al.  PAS Domains: Internal Sensors of Oxygen, Redox Potential, and Light , 1999, Microbiology and Molecular Biology Reviews.

[32]  M. Gilles-Gonzalez,et al.  Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P Reymond,et al.  Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. , 1998, Science.

[34]  Steven L. Cohen,et al.  DEPARTMENT OF PHYSIOLOGY: 2016/2017 LT/LE ORGANIZATION CHART , 2016 .

[35]  P. S. Kim,et al.  Imitation of Escherichia coli Aspartate Receptor Signaling in Engineered Dimers of the Cytoplasmic Domain , 1996, Science.

[36]  Joanne I. Yeh,et al.  Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. , 1995, Science.

[37]  M. Inouye,et al.  Transmembrane signaling. Mutational analysis of the cytoplasmic linker region of Taz1-1, a Tar-EnvZ chimeric receptor in Escherichia coli. , 1994, Journal of molecular biology.

[38]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[39]  H. Fischer Genetic regulation of nitrogen fixation in rhizobia. , 1994, Microbiological reviews.

[40]  M. Perutz,et al.  Heme-based sensors, exemplified by the kinase FixL, are a new class of heme protein with distinctive ligand binding and autoxidation. , 1994, Biochemistry.

[41]  G. Ditta,et al.  Mutants of the two-component regulatory protein FixJ of Rhizobium meliloti that have increased activity at the nifA promoter. , 1993, Gene.

[42]  T. Silhavy,et al.  The essential tension: opposed reactions in bacterial two-component regulatory systems. , 1993, Trends in microbiology.

[43]  M. Inouye,et al.  Intermolecular complementation between two defective mutant signal-transducing receptors of Escherichia coli. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Gilles-Gonzalez,et al.  A haemoprotein with kinase activity encoded by the oxygen sensor of Rhizobium meliloti , 1991, Nature.

[45]  M. Inouye,et al.  Activation of bacterial porin gene expression by a chimeric signal transducer in response to aspartate. , 1989, Science.

[46]  D. Kahn,et al.  Cascade regulation of nif gene expression in Rhizobium meliloti , 1988, Cell.

[47]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[48]  A. Mclachlan,et al.  Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. , 1975, Journal of molecular biology.

[49]  A. Lupas,et al.  The structure of alpha-helical coiled coils. , 2005, Advances in protein chemistry.

[50]  Andrei N. Lupas,et al.  The structure of α-helical coiled coils , 2005 .

[51]  D. Kahn,et al.  Conformational changes induced by phosphorylation of the FixJ receiver domain. , 1999, Structure.

[52]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .