Learning the Morphological Diversity

This article proposes a new method for image separation into a linear combination of morphological components. Sparsity in fixed dictionaries is used to extract the cartoon and oscillating content of the image. Complicated texture patterns are extracted by learning adapted local dictionaries that sparsify patches in the image. These fixed and learned sparsity priors define a nonconvex energy, and the separation is obtained as a stationary point of this energy. This variational optimization is extended to solve more general inverse problems such as inpainting. A new adaptive morphological component analysis algorithm is derived to find a stationary point of the energy. Using adapted dictionaries learned from data allows one to circumvent some difficulties faced by fixed dictionaries. Numerical results demonstrate that this adaptivity is indeed crucial in capturing complex texture patterns.

[1]  S. Mallat,et al.  Orthogonal bandelet bases for geometric images approximation , 2008 .

[2]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[3]  Jean-Luc Starck,et al.  Sparse Representation-based Image Deconvolution by iterative Thresholding , 2006 .

[4]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[5]  D. Donoho,et al.  Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA) , 2005 .

[6]  Robert D. Nowak,et al.  A bound optimization approach to wavelet-based image deconvolution , 2005, IEEE International Conference on Image Processing 2005.

[7]  Stéphane Mallat,et al.  Bandelet Image Approximation and Compression , 2005, Multiscale Model. Simul..

[8]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[9]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[10]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[11]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Guillermo Sapiro,et al.  Filling-in by joint interpolation of vector fields and gray levels , 2001, IEEE Trans. Image Process..

[14]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[15]  Jean-Luc Starck,et al.  Learning adapted dictionaries for geometry and texture separation , 2007, SPIE Optical Engineering + Applications.

[16]  Sung Yong Shin,et al.  On pixel-based texture synthesis by non-parametric sampling , 2006, Comput. Graph..

[17]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[18]  Gabriel Peyré,et al.  Sparse Modeling of Textures , 2009, Journal of Mathematical Imaging and Vision.

[19]  Alexey Ozerov,et al.  Multichannel Nonnegative Matrix Factorization in Convolutive Mixtures for Audio Source Separation , 2010, IEEE Transactions on Audio, Speech, and Language Processing.

[20]  D. Donoho,et al.  Redundant Multiscale Transforms and Their Application for Morphological Component Separation , 2004 .

[21]  L. Lieu,et al.  Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces , 2008 .

[22]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[23]  Mohamed-Jalal Fadili,et al.  Sparsity and Morphological Diversity in Blind Source Separation , 2007, IEEE Transactions on Image Processing.

[24]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[25]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[26]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[27]  Y. Nesterov Gradient methods for minimizing composite objective function , 2007 .

[28]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[29]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[30]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[31]  D. L. Donoho,et al.  Ideal spacial adaptation via wavelet shrinkage , 1994 .

[32]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[33]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[34]  Guillermo Sapiro,et al.  Discriminative learned dictionaries for local image analysis , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Barak A. Pearlmutter,et al.  Blind Source Separation by Sparse Decomposition in a Signal Dictionary , 2001, Neural Computation.

[36]  Mohamed-Jalal Fadili,et al.  Morphological Component Analysis: An Adaptive Thresholding Strategy , 2007, IEEE Transactions on Image Processing.

[37]  Rachid Deriche,et al.  Vector-valued image regularization with PDEs: a common framework for different applications , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[39]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[40]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[41]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[42]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[43]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[44]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[45]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[46]  Rémi Gribonval,et al.  Learning unions of orthonormal bases with thresholded singular value decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[47]  Guillermo Sapiro,et al.  Online Learning for Matrix Factorization and Sparse Coding , 2009, J. Mach. Learn. Res..

[48]  Mohamed-Jalal Fadili,et al.  Fast Time-Space Tracking of Smoothly Moving Fine Structures in Image Sequences , 2007, 2007 IEEE International Conference on Image Processing.

[49]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[50]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[51]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[52]  Patrick Pérez,et al.  Region filling and object removal by exemplar-based image inpainting , 2004, IEEE Transactions on Image Processing.

[53]  Michael Elad,et al.  Algorithms for signal separation exploiting sparse representations, with application to texture image separation , 2008, 2008 IEEE 25th Convention of Electrical and Electronics Engineers in Israel.

[54]  Simon Masnou,et al.  Disocclusion: a variational approach using level lines , 2002, IEEE Trans. Image Process..

[55]  D. Donoho Wedgelets: nearly minimax estimation of edges , 1999 .

[56]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[57]  José M. Bioucas-Dias,et al.  Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors , 2006, IEEE Transactions on Image Processing.

[58]  S. Mallat A wavelet tour of signal processing , 1998 .

[59]  Michael J. Black,et al.  Fields of Experts , 2009, International Journal of Computer Vision.

[60]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[61]  Ronald R. Coifman,et al.  Brushlets: A Tool for Directional Image Analysis and Image Compression , 1997 .

[62]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[63]  Mohamed-Jalal Fadili,et al.  Wire Structure Pattern Extraction and Tracking From X-Ray Images of Composite Mechanisms , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).