RBF-PU interpolation with variable subdomain sizes and shape parameters
暂无分享,去创建一个
[1] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[2] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[3] M. Golberg,et al. Improved multiquadric approximation for partial differential equations , 1996 .
[4] Gregory E. Fasshauer,et al. On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.
[5] Roberto Cavoretto,et al. Robust Approximation Algorithms for the Detection of Attraction Basins in Dynamical Systems , 2015, J. Sci. Comput..
[6] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .
[7] Gregory E. Fasshauer,et al. Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.
[8] Elisabeth Larsson,et al. Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..
[9] Elisabeth Larsson,et al. A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..
[10] Roberto Cavoretto,et al. A Trivariate Interpolation Algorithm Using a Cube-Partition Searching Procedure , 2014, SIAM J. Sci. Comput..
[11] Gene H. Golub,et al. Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.
[12] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[13] Roberto Cavoretto,et al. Efficient computation of partition of unity interpolants through a block-based searching technique , 2016, Comput. Math. Appl..