RBF-PU interpolation with variable subdomain sizes and shape parameters

In this paper, we deal with the challenging computational issue of interpolating large data sets, with eventually non-homogeneous densities. To such scope, the Radial Basis Function Partition of Unity (RBF-PU) method has been proved to be a reliable numerical tool. However, there are not available techniques enabling us to efficiently select the sizes of the local PU subdomains which, together with the value of the RBF shape parameter, greatly influence the accuracy of the final fit. Thus here, by minimizing an a priori error estimate, we propose a RBF-PU method by suitably selecting variable shape parameters and subdomain sizes. Numerical results and applications show performaces of the interpolation technique.

[1]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[2]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[3]  M. Golberg,et al.  Improved multiquadric approximation for partial differential equations , 1996 .

[4]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[5]  Roberto Cavoretto,et al.  Robust Approximation Algorithms for the Detection of Attraction Basins in Dynamical Systems , 2015, J. Sci. Comput..

[6]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .

[7]  Gregory E. Fasshauer,et al.  Kernel-based Approximation Methods using MATLAB , 2015, Interdisciplinary Mathematical Sciences.

[8]  Elisabeth Larsson,et al.  Stable Computations with Gaussian Radial Basis Functions , 2011, SIAM J. Sci. Comput..

[9]  Elisabeth Larsson,et al.  A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..

[10]  Roberto Cavoretto,et al.  A Trivariate Interpolation Algorithm Using a Cube-Partition Searching Procedure , 2014, SIAM J. Sci. Comput..

[11]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[12]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[13]  Roberto Cavoretto,et al.  Efficient computation of partition of unity interpolants through a block-based searching technique , 2016, Comput. Math. Appl..